重新审视名义统一

UNIF Pub Date : 2010-12-21 DOI:10.4204/EPTCS.42.1
Christian Urban
{"title":"重新审视名义统一","authors":"Christian Urban","doi":"10.4204/EPTCS.42.1","DOIUrl":null,"url":null,"abstract":"Nominal unification calculates substitutions that make terms involving binders equal modulo alpha-equivalence. Although nominal unification can be seen as equivalent to Miller's higher-order pattern unification, it has properties, such as the use of first-order terms with names (as opposed to alpha-equivalence classes) and that no new names need to be generated during unification, which set it clearly apart from higher-order pattern unification. The purpose of this paper is to simplify a clunky proof from the original paper on nominal unification and to give an overview over some results about nominal unification.","PeriodicalId":164988,"journal":{"name":"UNIF","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Nominal Unification Revisited\",\"authors\":\"Christian Urban\",\"doi\":\"10.4204/EPTCS.42.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nominal unification calculates substitutions that make terms involving binders equal modulo alpha-equivalence. Although nominal unification can be seen as equivalent to Miller's higher-order pattern unification, it has properties, such as the use of first-order terms with names (as opposed to alpha-equivalence classes) and that no new names need to be generated during unification, which set it clearly apart from higher-order pattern unification. The purpose of this paper is to simplify a clunky proof from the original paper on nominal unification and to give an overview over some results about nominal unification.\",\"PeriodicalId\":164988,\"journal\":{\"name\":\"UNIF\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UNIF\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.42.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UNIF","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.42.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

名义统一计算替换,使涉及粘合剂的项等于模等价。尽管名义统一可以被视为等同于Miller的高阶模式统一,但它具有一些特性,例如使用带名称的一阶项(与α等价类相反),并且在统一期间不需要生成新名称,这将其与高阶模式统一明显区分开来。本文的目的是简化原论文中关于名义统一的一个笨拙的证明,并对有关名义统一的一些结果进行概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nominal Unification Revisited
Nominal unification calculates substitutions that make terms involving binders equal modulo alpha-equivalence. Although nominal unification can be seen as equivalent to Miller's higher-order pattern unification, it has properties, such as the use of first-order terms with names (as opposed to alpha-equivalence classes) and that no new names need to be generated during unification, which set it clearly apart from higher-order pattern unification. The purpose of this paper is to simplify a clunky proof from the original paper on nominal unification and to give an overview over some results about nominal unification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信