空气质量监测的机器学习方法

Akram Zaytar, Chaker El Amrani
{"title":"空气质量监测的机器学习方法","authors":"Akram Zaytar, Chaker El Amrani","doi":"10.1145/3386723.3387835","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms, and especially deep neural networks, provide universal estimator paradigms to approximate optimal solutions for arbitrary domain-specific problems. On the other hand, environmental-related problems that are a direct result of our rapidly changing climate are, nowadays, of the highest importance. Recently, the adoption of machine learning algorithms for environmental modeling has increased, especially in time series forecasting and computer vision. In this review, we attempt to provide a unified and systematic survey of the current machine learning algorithms used to solve multiple air quality monitoring tasks. We specifically focus on air quality modeling using satellite imagery and sensor device data. Lastly, we propose future directions with neural network modeling and representation learning.","PeriodicalId":139072,"journal":{"name":"Proceedings of the 3rd International Conference on Networking, Information Systems & Security","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Methods for Air Quality Monitoring\",\"authors\":\"Akram Zaytar, Chaker El Amrani\",\"doi\":\"10.1145/3386723.3387835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning algorithms, and especially deep neural networks, provide universal estimator paradigms to approximate optimal solutions for arbitrary domain-specific problems. On the other hand, environmental-related problems that are a direct result of our rapidly changing climate are, nowadays, of the highest importance. Recently, the adoption of machine learning algorithms for environmental modeling has increased, especially in time series forecasting and computer vision. In this review, we attempt to provide a unified and systematic survey of the current machine learning algorithms used to solve multiple air quality monitoring tasks. We specifically focus on air quality modeling using satellite imagery and sensor device data. Lastly, we propose future directions with neural network modeling and representation learning.\",\"PeriodicalId\":139072,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Networking, Information Systems & Security\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Networking, Information Systems & Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3386723.3387835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Networking, Information Systems & Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386723.3387835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习算法,特别是深度神经网络,提供了通用的估计范式来近似任意特定领域问题的最优解。另一方面,与环境有关的问题是我们迅速变化的气候的直接结果,是当今最重要的问题。最近,机器学习算法在环境建模中的应用越来越多,特别是在时间序列预测和计算机视觉方面。在这篇综述中,我们试图对当前用于解决多个空气质量监测任务的机器学习算法进行统一和系统的调查。我们特别关注使用卫星图像和传感器设备数据的空气质量建模。最后,我们提出了神经网络建模和表征学习的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Methods for Air Quality Monitoring
Machine learning algorithms, and especially deep neural networks, provide universal estimator paradigms to approximate optimal solutions for arbitrary domain-specific problems. On the other hand, environmental-related problems that are a direct result of our rapidly changing climate are, nowadays, of the highest importance. Recently, the adoption of machine learning algorithms for environmental modeling has increased, especially in time series forecasting and computer vision. In this review, we attempt to provide a unified and systematic survey of the current machine learning algorithms used to solve multiple air quality monitoring tasks. We specifically focus on air quality modeling using satellite imagery and sensor device data. Lastly, we propose future directions with neural network modeling and representation learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信