学习分类器系统在高光谱图像分类中的应用分析与评价

A. Quirin, J. Korczak, Martin Volker Butz, D. Goldberg
{"title":"学习分类器系统在高光谱图像分类中的应用分析与评价","authors":"A. Quirin, J. Korczak, Martin Volker Butz, D. Goldberg","doi":"10.1109/ISDA.2005.23","DOIUrl":null,"url":null,"abstract":"In this article, two learning classifier systems based on evolutionary techniques are described to classify remote sensing images. Usually, these images contain voluminous, complex, and sometimes erroneous and noisy data. The first approach implements ICU, an evolutionary rule discovery system, generating simple and robust rules. The second approach applies the real-valued accuracy-based classification system XCSR. The two algorithms are detailed and validated on hyperspectral data.","PeriodicalId":345842,"journal":{"name":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analysis and evaluation of learning classifier systems applied to hyperspectral image classification\",\"authors\":\"A. Quirin, J. Korczak, Martin Volker Butz, D. Goldberg\",\"doi\":\"10.1109/ISDA.2005.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, two learning classifier systems based on evolutionary techniques are described to classify remote sensing images. Usually, these images contain voluminous, complex, and sometimes erroneous and noisy data. The first approach implements ICU, an evolutionary rule discovery system, generating simple and robust rules. The second approach applies the real-valued accuracy-based classification system XCSR. The two algorithms are detailed and validated on hyperspectral data.\",\"PeriodicalId\":345842,\"journal\":{\"name\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2005.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2005.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了两种基于进化技术的学习分类器系统对遥感图像进行分类。通常,这些图像包含大量的、复杂的、有时是错误的和有噪声的数据。第一种方法实现了演化规则发现系统ICU,生成简单而健壮的规则。第二种方法应用基于实值精度的分类系统XCSR。详细介绍了两种算法,并在高光谱数据上进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and evaluation of learning classifier systems applied to hyperspectral image classification
In this article, two learning classifier systems based on evolutionary techniques are described to classify remote sensing images. Usually, these images contain voluminous, complex, and sometimes erroneous and noisy data. The first approach implements ICU, an evolutionary rule discovery system, generating simple and robust rules. The second approach applies the real-valued accuracy-based classification system XCSR. The two algorithms are detailed and validated on hyperspectral data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信