基于超像素的障碍物快速检测

Dong Huiying, Jiang Tengguang
{"title":"基于超像素的障碍物快速检测","authors":"Dong Huiying, Jiang Tengguang","doi":"10.1109/CCDC.2015.7162818","DOIUrl":null,"url":null,"abstract":"For the mobile machine vision navigation process will encounter obstacles, this paper presents a fast obstacle recognition algorithm based on super pixels. First, reduce the resolution of the captured image in order to ensure real-time, and then using the SLIC super-pixel image processing algorithms. Finally, adopting the SAD method for classification estimates whether the pixel belongs to the obstacle. Experimental results show that the algorithm can quickly identify obstacles, playing an important role in visual navigation for mobile robots.","PeriodicalId":273292,"journal":{"name":"The 27th Chinese Control and Decision Conference (2015 CCDC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid detection of obstacle based on super pixels\",\"authors\":\"Dong Huiying, Jiang Tengguang\",\"doi\":\"10.1109/CCDC.2015.7162818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the mobile machine vision navigation process will encounter obstacles, this paper presents a fast obstacle recognition algorithm based on super pixels. First, reduce the resolution of the captured image in order to ensure real-time, and then using the SLIC super-pixel image processing algorithms. Finally, adopting the SAD method for classification estimates whether the pixel belongs to the obstacle. Experimental results show that the algorithm can quickly identify obstacles, playing an important role in visual navigation for mobile robots.\",\"PeriodicalId\":273292,\"journal\":{\"name\":\"The 27th Chinese Control and Decision Conference (2015 CCDC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 27th Chinese Control and Decision Conference (2015 CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2015.7162818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 27th Chinese Control and Decision Conference (2015 CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2015.7162818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对移动机器视觉导航过程中会遇到障碍物的问题,本文提出了一种基于超像素的快速障碍物识别算法。首先降低捕获图像的分辨率以保证实时性,然后采用SLIC超像素图像处理算法。最后,采用SAD方法进行分类,估计像素点是否属于障碍物。实验结果表明,该算法能够快速识别障碍物,在移动机器人视觉导航中发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid detection of obstacle based on super pixels
For the mobile machine vision navigation process will encounter obstacles, this paper presents a fast obstacle recognition algorithm based on super pixels. First, reduce the resolution of the captured image in order to ensure real-time, and then using the SLIC super-pixel image processing algorithms. Finally, adopting the SAD method for classification estimates whether the pixel belongs to the obstacle. Experimental results show that the algorithm can quickly identify obstacles, playing an important role in visual navigation for mobile robots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信