二权Hopfield网络的信息容量与容错性

A. Jagota, A. Negatu, D. Kaznachey
{"title":"二权Hopfield网络的信息容量与容错性","authors":"A. Jagota, A. Negatu, D. Kaznachey","doi":"10.1109/ICNN.1994.374327","DOIUrl":null,"url":null,"abstract":"We define a measure for the fault-tolerance of binary weights Hopfield networks and relate it to a measure of information capacity. Using these measures, we compute results on the fault-tolerance and information capacity of certain Hopfield networks employing binary-valued weights. These Hopfield networks are governed by a single scalar parameter that controls their weights and biases. In one extreme value of this parameter, we show that the information capacity is optimal whereas the fault-tolerance is zero. At the other extreme, our results are inexact. We are only able to show that the information capacity is at least of the order of N log/sub 2/ N and N respectively, where N is the number of units. Our fault-tolerance results are even poorer, though nonzero. Nevertheless they do indicate a trade-off between information capacity and fault-tolerance as this parameter is varied from the first extreme to the second. We are also able to show that particular collections of patterns remain stable states as this parameter is varied, and fault-tolerance for them goes from zero at one extreme of this parameter to /spl Theta/(N/sup 2/) at the other extreme.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Information capacity and fault tolerance of binary weights Hopfield nets\",\"authors\":\"A. Jagota, A. Negatu, D. Kaznachey\",\"doi\":\"10.1109/ICNN.1994.374327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a measure for the fault-tolerance of binary weights Hopfield networks and relate it to a measure of information capacity. Using these measures, we compute results on the fault-tolerance and information capacity of certain Hopfield networks employing binary-valued weights. These Hopfield networks are governed by a single scalar parameter that controls their weights and biases. In one extreme value of this parameter, we show that the information capacity is optimal whereas the fault-tolerance is zero. At the other extreme, our results are inexact. We are only able to show that the information capacity is at least of the order of N log/sub 2/ N and N respectively, where N is the number of units. Our fault-tolerance results are even poorer, though nonzero. Nevertheless they do indicate a trade-off between information capacity and fault-tolerance as this parameter is varied from the first extreme to the second. We are also able to show that particular collections of patterns remain stable states as this parameter is varied, and fault-tolerance for them goes from zero at one extreme of this parameter to /spl Theta/(N/sup 2/) at the other extreme.<<ETX>>\",\"PeriodicalId\":209128,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1994.374327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们定义了二元权Hopfield网络的容错度量,并将其与信息容量度量联系起来。利用这些度量,我们计算了采用二值权的Hopfield网络的容错性和信息容量。这些Hopfield网络由单个标量参数控制其权重和偏差。在该参数的一个极值中,我们证明了信息容量是最优的,而容错性为零。在另一个极端,我们的结果是不精确的。我们只能证明信息容量至少分别为N log/sub 2/ N和N阶,其中N为单元数。我们的容错结果甚至更差,尽管不是零。尽管如此,它们确实表明了信息容量和容错性之间的权衡,因为这个参数从第一个极端到第二个极端是不同的。我们还能够证明,当该参数变化时,特定的模式集合保持稳定状态,并且它们的容错性从该参数的一个极端的零到另一个极端的/spl Theta/(N/sup 2/)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Information capacity and fault tolerance of binary weights Hopfield nets
We define a measure for the fault-tolerance of binary weights Hopfield networks and relate it to a measure of information capacity. Using these measures, we compute results on the fault-tolerance and information capacity of certain Hopfield networks employing binary-valued weights. These Hopfield networks are governed by a single scalar parameter that controls their weights and biases. In one extreme value of this parameter, we show that the information capacity is optimal whereas the fault-tolerance is zero. At the other extreme, our results are inexact. We are only able to show that the information capacity is at least of the order of N log/sub 2/ N and N respectively, where N is the number of units. Our fault-tolerance results are even poorer, though nonzero. Nevertheless they do indicate a trade-off between information capacity and fault-tolerance as this parameter is varied from the first extreme to the second. We are also able to show that particular collections of patterns remain stable states as this parameter is varied, and fault-tolerance for them goes from zero at one extreme of this parameter to /spl Theta/(N/sup 2/) at the other extreme.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信