Feilong Wang, Yipeng Ji, Mingsheng Liu, Yangyang Li, Xiong Li, Xu Zhang, Xiaojun Shi
{"title":"基于联盟区块链的PBFT共识机制优化策略","authors":"Feilong Wang, Yipeng Ji, Mingsheng Liu, Yangyang Li, Xiong Li, Xu Zhang, Xiaojun Shi","doi":"10.1145/3457337.3457843","DOIUrl":null,"url":null,"abstract":"At present, the transaction delay of the consortium block chain applying the Practical Byzantine Fault Tolerance (PBFT) consensus protocol can only reach 2 to 5 seconds, and the throughput cannot reach tens of thousands. In addition as the number of nodes increases, the performance of the consortium block chain declines very quickly. The main challenge of previous research are to realize communication network topology of PBFT algorithm and high information exchange in the case of Byzantine failure, thus, this paper proposes an optimized Byzantine fault-tolerant algorithm to solve the performance bottleneck of the consortium chain. First of all, for the communication network structure of the whole network broadcast, we have reached an agreement on the transaction according to the pre-prepare and prepare phases of PBFT, and generally enter the commit phase, there is a high probability that the leader is honest, so we will communicate with the commit phase The network is optimized as a star communication structure. Second, combined with Tendermint, merge the view-change process of Byzantine failures of the normal consensus process, and switch the leader according to the longest chain principle. The algorithm is based on a partially synchronized network model to ensure the security and liveness of the protocol, and improve the performance and effective robustness.","PeriodicalId":270073,"journal":{"name":"Proceedings of the 3rd ACM International Symposium on Blockchain and Secure Critical Infrastructure","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Optimization Strategy for PBFT Consensus Mechanism Based On Consortium Blockchain\",\"authors\":\"Feilong Wang, Yipeng Ji, Mingsheng Liu, Yangyang Li, Xiong Li, Xu Zhang, Xiaojun Shi\",\"doi\":\"10.1145/3457337.3457843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, the transaction delay of the consortium block chain applying the Practical Byzantine Fault Tolerance (PBFT) consensus protocol can only reach 2 to 5 seconds, and the throughput cannot reach tens of thousands. In addition as the number of nodes increases, the performance of the consortium block chain declines very quickly. The main challenge of previous research are to realize communication network topology of PBFT algorithm and high information exchange in the case of Byzantine failure, thus, this paper proposes an optimized Byzantine fault-tolerant algorithm to solve the performance bottleneck of the consortium chain. First of all, for the communication network structure of the whole network broadcast, we have reached an agreement on the transaction according to the pre-prepare and prepare phases of PBFT, and generally enter the commit phase, there is a high probability that the leader is honest, so we will communicate with the commit phase The network is optimized as a star communication structure. Second, combined with Tendermint, merge the view-change process of Byzantine failures of the normal consensus process, and switch the leader according to the longest chain principle. The algorithm is based on a partially synchronized network model to ensure the security and liveness of the protocol, and improve the performance and effective robustness.\",\"PeriodicalId\":270073,\"journal\":{\"name\":\"Proceedings of the 3rd ACM International Symposium on Blockchain and Secure Critical Infrastructure\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd ACM International Symposium on Blockchain and Secure Critical Infrastructure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3457337.3457843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd ACM International Symposium on Blockchain and Secure Critical Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457337.3457843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Optimization Strategy for PBFT Consensus Mechanism Based On Consortium Blockchain
At present, the transaction delay of the consortium block chain applying the Practical Byzantine Fault Tolerance (PBFT) consensus protocol can only reach 2 to 5 seconds, and the throughput cannot reach tens of thousands. In addition as the number of nodes increases, the performance of the consortium block chain declines very quickly. The main challenge of previous research are to realize communication network topology of PBFT algorithm and high information exchange in the case of Byzantine failure, thus, this paper proposes an optimized Byzantine fault-tolerant algorithm to solve the performance bottleneck of the consortium chain. First of all, for the communication network structure of the whole network broadcast, we have reached an agreement on the transaction according to the pre-prepare and prepare phases of PBFT, and generally enter the commit phase, there is a high probability that the leader is honest, so we will communicate with the commit phase The network is optimized as a star communication structure. Second, combined with Tendermint, merge the view-change process of Byzantine failures of the normal consensus process, and switch the leader according to the longest chain principle. The algorithm is based on a partially synchronized network model to ensure the security and liveness of the protocol, and improve the performance and effective robustness.