基于ABC的进化卷积神经网络

Wenbo Zhu, Weichang Yeh, Jianwen Chen, Dafeng Chen, Aiyuan Li, Yangyang Lin
{"title":"基于ABC的进化卷积神经网络","authors":"Wenbo Zhu, Weichang Yeh, Jianwen Chen, Dafeng Chen, Aiyuan Li, Yangyang Lin","doi":"10.1145/3318299.3318301","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) have been used over the past years to solve many different artificial intelligence (AI) problems, providing significant advances in some domains and leading to state-of-the-art results. Nonetheless, the design of CNNs architecture remains to be a meticulous and cumbersome process that requires the participation of specialists in the field. In this work, we have explored the neuro-evolution application to the automatic design of CNN topologies, developing a novel solution based on Artificial Bee Colony (ABC). The MNIST dataset is used to evaluate the proposed method, which is proved being highly competitive with the state-of-the-art.","PeriodicalId":164987,"journal":{"name":"International Conference on Machine Learning and Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Evolutionary Convolutional Neural Networks Using ABC\",\"authors\":\"Wenbo Zhu, Weichang Yeh, Jianwen Chen, Dafeng Chen, Aiyuan Li, Yangyang Lin\",\"doi\":\"10.1145/3318299.3318301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks (CNNs) have been used over the past years to solve many different artificial intelligence (AI) problems, providing significant advances in some domains and leading to state-of-the-art results. Nonetheless, the design of CNNs architecture remains to be a meticulous and cumbersome process that requires the participation of specialists in the field. In this work, we have explored the neuro-evolution application to the automatic design of CNN topologies, developing a novel solution based on Artificial Bee Colony (ABC). The MNIST dataset is used to evaluate the proposed method, which is proved being highly competitive with the state-of-the-art.\",\"PeriodicalId\":164987,\"journal\":{\"name\":\"International Conference on Machine Learning and Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3318299.3318301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318299.3318301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

卷积神经网络(cnn)在过去几年中被用于解决许多不同的人工智能(AI)问题,在某些领域取得了重大进展,并产生了最先进的结果。尽管如此,cnn架构的设计仍然是一个细致而繁琐的过程,需要该领域专家的参与。在这项工作中,我们探索了神经进化在CNN拓扑自动设计中的应用,开发了一种基于人工蜂群(Artificial Bee Colony, ABC)的新解决方案。使用MNIST数据集对所提出的方法进行了评估,证明该方法与最先进的方法具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary Convolutional Neural Networks Using ABC
Convolutional neural networks (CNNs) have been used over the past years to solve many different artificial intelligence (AI) problems, providing significant advances in some domains and leading to state-of-the-art results. Nonetheless, the design of CNNs architecture remains to be a meticulous and cumbersome process that requires the participation of specialists in the field. In this work, we have explored the neuro-evolution application to the automatic design of CNN topologies, developing a novel solution based on Artificial Bee Colony (ABC). The MNIST dataset is used to evaluate the proposed method, which is proved being highly competitive with the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信