合成水下图像的修复渲染

Chaitra Desai, R. Tabib, Saikumar Reddy, Ujwala Patil, U. Mudenagudi
{"title":"合成水下图像的修复渲染","authors":"Chaitra Desai, R. Tabib, Saikumar Reddy, Ujwala Patil, U. Mudenagudi","doi":"10.1145/3476124.3488637","DOIUrl":null,"url":null,"abstract":"In this paper, we propose to render synthetic underwater images considering revised image formation model, towards modeling restoration. Underwater images suffer from low contrast, color cast and haze due to dynamically varying properties of water, floating particles and submerged sediments. Due to this, light reaching the object, from the surface is subjected to direct scattering, backscattering and forward scattering. We propose to model this varying nature of light to render synthetic underwater images based on depth information and inherent optical properties of Jerlov water types.","PeriodicalId":199099,"journal":{"name":"SIGGRAPH Asia 2021 Posters","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Rendering of Synthetic Underwater Images Towards Restoration\",\"authors\":\"Chaitra Desai, R. Tabib, Saikumar Reddy, Ujwala Patil, U. Mudenagudi\",\"doi\":\"10.1145/3476124.3488637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose to render synthetic underwater images considering revised image formation model, towards modeling restoration. Underwater images suffer from low contrast, color cast and haze due to dynamically varying properties of water, floating particles and submerged sediments. Due to this, light reaching the object, from the surface is subjected to direct scattering, backscattering and forward scattering. We propose to model this varying nature of light to render synthetic underwater images based on depth information and inherent optical properties of Jerlov water types.\",\"PeriodicalId\":199099,\"journal\":{\"name\":\"SIGGRAPH Asia 2021 Posters\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2021 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3476124.3488637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2021 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476124.3488637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一种基于修正的图像形成模型的水下合成图像的渲染方法,以达到建模恢复的目的。由于水、漂浮颗粒和水下沉积物的动态变化,水下图像存在对比度低、偏色和雾霾的问题。因此,从表面到达物体的光受到直接散射、后向散射和前向散射。我们建议对这种不同性质的光进行建模,以基于深度信息和杰洛夫水类型的固有光学特性来渲染合成的水下图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rendering of Synthetic Underwater Images Towards Restoration
In this paper, we propose to render synthetic underwater images considering revised image formation model, towards modeling restoration. Underwater images suffer from low contrast, color cast and haze due to dynamically varying properties of water, floating particles and submerged sediments. Due to this, light reaching the object, from the surface is subjected to direct scattering, backscattering and forward scattering. We propose to model this varying nature of light to render synthetic underwater images based on depth information and inherent optical properties of Jerlov water types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信