A. Supriyadi, H. Takano, J. Murata, T. Goda, T. Hashiguchi
{"title":"基于系统估计器的混合动力系统自适应频率控制","authors":"A. Supriyadi, H. Takano, J. Murata, T. Goda, T. Hashiguchi","doi":"10.1109/POWERCON.2012.6401449","DOIUrl":null,"url":null,"abstract":"This paper presents an adaptive pitch and a battery controller design based on a system estimator. The approach presented in this research uses an online identification system, which updated whenever the estimated model mismatch exceeds predetermined bounds. Based on the redesigned model, an adaptive PID and lead-lag controller will be re-tuned using genetic algorithm (GA). The optimization problems are formulated to increase the damping ratio and place the dominant mode in a D-shape region. The GA is applied to solve the optimization problem and to achieve control parameters. The performance of the proposed adaptive controller has been investigated in a hybrid wind-diesel power system in comparison with conventional controller. Simulation results confirm that damping effect of the proposed adaptive controllers are much better that of the conventional controllers against various operating.","PeriodicalId":176214,"journal":{"name":"2012 IEEE International Conference on Power System Technology (POWERCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Adaptive Frequency Control for Hybrid Wind-Diesel power system using system estimator\",\"authors\":\"A. Supriyadi, H. Takano, J. Murata, T. Goda, T. Hashiguchi\",\"doi\":\"10.1109/POWERCON.2012.6401449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an adaptive pitch and a battery controller design based on a system estimator. The approach presented in this research uses an online identification system, which updated whenever the estimated model mismatch exceeds predetermined bounds. Based on the redesigned model, an adaptive PID and lead-lag controller will be re-tuned using genetic algorithm (GA). The optimization problems are formulated to increase the damping ratio and place the dominant mode in a D-shape region. The GA is applied to solve the optimization problem and to achieve control parameters. The performance of the proposed adaptive controller has been investigated in a hybrid wind-diesel power system in comparison with conventional controller. Simulation results confirm that damping effect of the proposed adaptive controllers are much better that of the conventional controllers against various operating.\",\"PeriodicalId\":176214,\"journal\":{\"name\":\"2012 IEEE International Conference on Power System Technology (POWERCON)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Power System Technology (POWERCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POWERCON.2012.6401449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Power System Technology (POWERCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERCON.2012.6401449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Frequency Control for Hybrid Wind-Diesel power system using system estimator
This paper presents an adaptive pitch and a battery controller design based on a system estimator. The approach presented in this research uses an online identification system, which updated whenever the estimated model mismatch exceeds predetermined bounds. Based on the redesigned model, an adaptive PID and lead-lag controller will be re-tuned using genetic algorithm (GA). The optimization problems are formulated to increase the damping ratio and place the dominant mode in a D-shape region. The GA is applied to solve the optimization problem and to achieve control parameters. The performance of the proposed adaptive controller has been investigated in a hybrid wind-diesel power system in comparison with conventional controller. Simulation results confirm that damping effect of the proposed adaptive controllers are much better that of the conventional controllers against various operating.