Roberto Calvo-Palomino, F. Ricciato, Blaz Repas, D. Giustiniano, Vincent Lenders
{"title":"基于低成本SDR接收机的飞机信号到达时间估计","authors":"Roberto Calvo-Palomino, F. Ricciato, Blaz Repas, D. Giustiniano, Vincent Lenders","doi":"10.1109/IPSN.2018.00055","DOIUrl":null,"url":null,"abstract":"Precise Time-of-Arrival (TOA) estimations of aircraft and drone signals are important for a wide set of applications including aircraft/drone tracking, air traffic data verification, or self-localization. Our focus in this work is on TOA estimation methods that can run on low-cost software-defined radio (SDR) receivers, as widely deployed in Mode S / ADS-B crowdsourced sensor networks such as the OpenSky Network. We evaluate experimentally classical TOA estimation methods which are based on a cross-correlation with a reconstructed message template and find that these methods are not optimal for such signals. We propose two alternative methods that provide superior results for real-world Mode S / ADS-B signals captured with low-cost SDR receivers. The best method achieves a standard deviation error of 1.5 ns.","PeriodicalId":358074,"journal":{"name":"2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Nanosecond-Precision Time-of-Arrival Estimation for Aircraft Signals with Low-Cost SDR Receivers\",\"authors\":\"Roberto Calvo-Palomino, F. Ricciato, Blaz Repas, D. Giustiniano, Vincent Lenders\",\"doi\":\"10.1109/IPSN.2018.00055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise Time-of-Arrival (TOA) estimations of aircraft and drone signals are important for a wide set of applications including aircraft/drone tracking, air traffic data verification, or self-localization. Our focus in this work is on TOA estimation methods that can run on low-cost software-defined radio (SDR) receivers, as widely deployed in Mode S / ADS-B crowdsourced sensor networks such as the OpenSky Network. We evaluate experimentally classical TOA estimation methods which are based on a cross-correlation with a reconstructed message template and find that these methods are not optimal for such signals. We propose two alternative methods that provide superior results for real-world Mode S / ADS-B signals captured with low-cost SDR receivers. The best method achieves a standard deviation error of 1.5 ns.\",\"PeriodicalId\":358074,\"journal\":{\"name\":\"2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPSN.2018.00055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPSN.2018.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanosecond-Precision Time-of-Arrival Estimation for Aircraft Signals with Low-Cost SDR Receivers
Precise Time-of-Arrival (TOA) estimations of aircraft and drone signals are important for a wide set of applications including aircraft/drone tracking, air traffic data verification, or self-localization. Our focus in this work is on TOA estimation methods that can run on low-cost software-defined radio (SDR) receivers, as widely deployed in Mode S / ADS-B crowdsourced sensor networks such as the OpenSky Network. We evaluate experimentally classical TOA estimation methods which are based on a cross-correlation with a reconstructed message template and find that these methods are not optimal for such signals. We propose two alternative methods that provide superior results for real-world Mode S / ADS-B signals captured with low-cost SDR receivers. The best method achieves a standard deviation error of 1.5 ns.