Ksenia D. Mukhina, Alexander A. Visheratin, D. Nasonov
{"title":"利用大型地理空间数据集构建城市尺度的步行路线","authors":"Ksenia D. Mukhina, Alexander A. Visheratin, D. Nasonov","doi":"10.23919/FRUCT.2018.8588074","DOIUrl":null,"url":null,"abstract":"Nowadays, social networks play an important role in many aspects of people’s life and in traveling in particular. People share their experience and opinions not only on specialized sites, like TripAdvisor, but also in social networks, e.g. Instagram. Combining information from different sources we can get a manifold dataset, which covers main sights, famous buildings as well as places popular with city residents. In this paper, we propose method for generation of walking tours based on large multi-source dataset. In order to create this dataset, we developed data crawling framework, which is able to collect data from Instagram at high speed. We provide several use cases for the developed itinerary generation method and demonstrate that it can significantly enrich standard touristic paths provided by official site.","PeriodicalId":183812,"journal":{"name":"2018 23rd Conference of Open Innovations Association (FRUCT)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building City-Scale Walking Itineraries Using Large Geospatial Datasets\",\"authors\":\"Ksenia D. Mukhina, Alexander A. Visheratin, D. Nasonov\",\"doi\":\"10.23919/FRUCT.2018.8588074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, social networks play an important role in many aspects of people’s life and in traveling in particular. People share their experience and opinions not only on specialized sites, like TripAdvisor, but also in social networks, e.g. Instagram. Combining information from different sources we can get a manifold dataset, which covers main sights, famous buildings as well as places popular with city residents. In this paper, we propose method for generation of walking tours based on large multi-source dataset. In order to create this dataset, we developed data crawling framework, which is able to collect data from Instagram at high speed. We provide several use cases for the developed itinerary generation method and demonstrate that it can significantly enrich standard touristic paths provided by official site.\",\"PeriodicalId\":183812,\"journal\":{\"name\":\"2018 23rd Conference of Open Innovations Association (FRUCT)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 23rd Conference of Open Innovations Association (FRUCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/FRUCT.2018.8588074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 23rd Conference of Open Innovations Association (FRUCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/FRUCT.2018.8588074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Building City-Scale Walking Itineraries Using Large Geospatial Datasets
Nowadays, social networks play an important role in many aspects of people’s life and in traveling in particular. People share their experience and opinions not only on specialized sites, like TripAdvisor, but also in social networks, e.g. Instagram. Combining information from different sources we can get a manifold dataset, which covers main sights, famous buildings as well as places popular with city residents. In this paper, we propose method for generation of walking tours based on large multi-source dataset. In order to create this dataset, we developed data crawling framework, which is able to collect data from Instagram at high speed. We provide several use cases for the developed itinerary generation method and demonstrate that it can significantly enrich standard touristic paths provided by official site.