基于维纳滤波和暹罗神经网络的图像去模糊

Vaibhav Setia, Shreyamsha Kumar
{"title":"基于维纳滤波和暹罗神经网络的图像去模糊","authors":"Vaibhav Setia, Shreyamsha Kumar","doi":"10.3991/ijes.v9i3.23961","DOIUrl":null,"url":null,"abstract":"Blurred images are difficult to avoid in situations when minor Atmospheric turbulence or camera movement results in low-quality images. We propose a system that takes a blurred image as input and produces a deblurred image by utilizing various filtering techniques. Additionally, we utilize the Siamese Network to match local image segments. A Siamese Neural Network model is used that is trained to account for image matching in the spatial domain. The best-matched image returned by the model is then further used for Signal-to-Noise ratio and Point Spread Function estimation. The Wiener filter is then used to deblur the image. Finally, the results of the deblurring techniques with existing algorithms are compared and it is shown that the error in deblurring an image using the techniques presented in this paper is considerably lesser than other techniques.","PeriodicalId":427062,"journal":{"name":"Int. J. Recent Contributions Eng. Sci. IT","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Image Deblurring using Wiener Filtering and Siamese Neural Network\",\"authors\":\"Vaibhav Setia, Shreyamsha Kumar\",\"doi\":\"10.3991/ijes.v9i3.23961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blurred images are difficult to avoid in situations when minor Atmospheric turbulence or camera movement results in low-quality images. We propose a system that takes a blurred image as input and produces a deblurred image by utilizing various filtering techniques. Additionally, we utilize the Siamese Network to match local image segments. A Siamese Neural Network model is used that is trained to account for image matching in the spatial domain. The best-matched image returned by the model is then further used for Signal-to-Noise ratio and Point Spread Function estimation. The Wiener filter is then used to deblur the image. Finally, the results of the deblurring techniques with existing algorithms are compared and it is shown that the error in deblurring an image using the techniques presented in this paper is considerably lesser than other techniques.\",\"PeriodicalId\":427062,\"journal\":{\"name\":\"Int. J. Recent Contributions Eng. Sci. IT\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Recent Contributions Eng. Sci. IT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3991/ijes.v9i3.23961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Recent Contributions Eng. Sci. IT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijes.v9i3.23961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当轻微的大气湍流或相机运动导致图像质量低时,图像模糊是很难避免的。我们提出了一个系统,以模糊图像作为输入,并利用各种滤波技术产生去模糊图像。此外,我们利用暹罗网络来匹配本地图像段。使用暹罗神经网络模型,该模型经过训练以解释空间域的图像匹配。然后将模型返回的最佳匹配图像进一步用于信噪比和点扩展函数估计。然后使用维纳滤镜去模糊图像。最后,将这些去模糊技术与现有算法的结果进行了比较,结果表明,使用本文提出的技术去模糊图像的误差比其他技术要小得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Deblurring using Wiener Filtering and Siamese Neural Network
Blurred images are difficult to avoid in situations when minor Atmospheric turbulence or camera movement results in low-quality images. We propose a system that takes a blurred image as input and produces a deblurred image by utilizing various filtering techniques. Additionally, we utilize the Siamese Network to match local image segments. A Siamese Neural Network model is used that is trained to account for image matching in the spatial domain. The best-matched image returned by the model is then further used for Signal-to-Noise ratio and Point Spread Function estimation. The Wiener filter is then used to deblur the image. Finally, the results of the deblurring techniques with existing algorithms are compared and it is shown that the error in deblurring an image using the techniques presented in this paper is considerably lesser than other techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信