基于drl的混合ris辅助卫星下行通信安全波束形成

Q. Ngo, Khoa T. Phan, Abdun Mahmood, Wei Xiang
{"title":"基于drl的混合ris辅助卫星下行通信安全波束形成","authors":"Q. Ngo, Khoa T. Phan, Abdun Mahmood, Wei Xiang","doi":"10.1109/COMNETSAT56033.2022.9994309","DOIUrl":null,"url":null,"abstract":"In this paper, a secure multiuser MISO satellite downlink communication system is considered with the assist of a hybrid reconfigurable intelligent surface (RIS). A robust satellite and RIS beamforming joint design is formulated to maximize the overall system secrecy rate. The RIS active and passive elements are optimized considering practical models of the outdated channel state information and power consumption. Deep reinforcement learning is leveraged to solve the highly dynamic and multidimensional beamforming design problem. Simulation results confirm the beamforming design effectiveness and the performance gains when exploiting hybrid-RIS over conventional passive RIS.","PeriodicalId":221444,"journal":{"name":"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DRL-Based Secure Beamforming for Hybrid-RIS Aided Satellite Downlink Communications\",\"authors\":\"Q. Ngo, Khoa T. Phan, Abdun Mahmood, Wei Xiang\",\"doi\":\"10.1109/COMNETSAT56033.2022.9994309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a secure multiuser MISO satellite downlink communication system is considered with the assist of a hybrid reconfigurable intelligent surface (RIS). A robust satellite and RIS beamforming joint design is formulated to maximize the overall system secrecy rate. The RIS active and passive elements are optimized considering practical models of the outdated channel state information and power consumption. Deep reinforcement learning is leveraged to solve the highly dynamic and multidimensional beamforming design problem. Simulation results confirm the beamforming design effectiveness and the performance gains when exploiting hybrid-RIS over conventional passive RIS.\",\"PeriodicalId\":221444,\"journal\":{\"name\":\"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMNETSAT56033.2022.9994309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMNETSAT56033.2022.9994309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种基于混合可重构智能面(RIS)的安全多用户MISO卫星下行通信系统。提出了一种鲁棒的卫星和RIS波束形成联合设计,以最大限度地提高整个系统的保密率。考虑过时信道状态信息和功耗的实际模型,对RIS的有源和无源元件进行了优化。利用深度强化学习来解决高动态和多维波束形成设计问题。仿真结果验证了混合RIS相对于传统被动RIS的波束形成设计的有效性和性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DRL-Based Secure Beamforming for Hybrid-RIS Aided Satellite Downlink Communications
In this paper, a secure multiuser MISO satellite downlink communication system is considered with the assist of a hybrid reconfigurable intelligent surface (RIS). A robust satellite and RIS beamforming joint design is formulated to maximize the overall system secrecy rate. The RIS active and passive elements are optimized considering practical models of the outdated channel state information and power consumption. Deep reinforcement learning is leveraged to solve the highly dynamic and multidimensional beamforming design problem. Simulation results confirm the beamforming design effectiveness and the performance gains when exploiting hybrid-RIS over conventional passive RIS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信