V. F. Fernández, S. M. Herranz, R. M. Unanue, A. C. Rubio
{"title":"朴素贝叶斯网页分类与HTML标记充实","authors":"V. F. Fernández, S. M. Herranz, R. M. Unanue, A. C. Rubio","doi":"10.1109/ICCGI.2006.23","DOIUrl":null,"url":null,"abstract":"In text and Web page classification, Bayesian prior probabilities are usually based on term frequencies, term counts within a page and among all the pages. However, new approaches in Web page representation use HTML mark-up information to find the term relevance in a Web page. This paper presents a naive Bayes Web page classification system for these approaches","PeriodicalId":112974,"journal":{"name":"2006 International Multi-Conference on Computing in the Global Information Technology - (ICCGI'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Naive Bayes Web Page Classification with HTML Mark-Up Enrichment\",\"authors\":\"V. F. Fernández, S. M. Herranz, R. M. Unanue, A. C. Rubio\",\"doi\":\"10.1109/ICCGI.2006.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In text and Web page classification, Bayesian prior probabilities are usually based on term frequencies, term counts within a page and among all the pages. However, new approaches in Web page representation use HTML mark-up information to find the term relevance in a Web page. This paper presents a naive Bayes Web page classification system for these approaches\",\"PeriodicalId\":112974,\"journal\":{\"name\":\"2006 International Multi-Conference on Computing in the Global Information Technology - (ICCGI'06)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Multi-Conference on Computing in the Global Information Technology - (ICCGI'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCGI.2006.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Multi-Conference on Computing in the Global Information Technology - (ICCGI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCGI.2006.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Naive Bayes Web Page Classification with HTML Mark-Up Enrichment
In text and Web page classification, Bayesian prior probabilities are usually based on term frequencies, term counts within a page and among all the pages. However, new approaches in Web page representation use HTML mark-up information to find the term relevance in a Web page. This paper presents a naive Bayes Web page classification system for these approaches