Zoubeyr Kaddour, Abderrahmane Belguerna, S. Benaissa
{"title":"部分和线性负象限相关随机变量的概率尾及其在线性模型中的应用","authors":"Zoubeyr Kaddour, Abderrahmane Belguerna, S. Benaissa","doi":"10.58205/jiamcs.v2i2.26","DOIUrl":null,"url":null,"abstract":"In this paper, we establish a new concentration inequality and complete convergence of weighted sums for arrays of rowwise linearly negative quadrant dependent (LNQD, in short) random variables and obtain a result dealing with complete convergence of first-order autoregressive processes with identically distributed LNQD innovations.","PeriodicalId":289834,"journal":{"name":"Journal of Innovative Applied Mathematics and Computational Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probability tail for linearly negative quadrant dependent random variables of partial sums and application to linear model\",\"authors\":\"Zoubeyr Kaddour, Abderrahmane Belguerna, S. Benaissa\",\"doi\":\"10.58205/jiamcs.v2i2.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we establish a new concentration inequality and complete convergence of weighted sums for arrays of rowwise linearly negative quadrant dependent (LNQD, in short) random variables and obtain a result dealing with complete convergence of first-order autoregressive processes with identically distributed LNQD innovations.\",\"PeriodicalId\":289834,\"journal\":{\"name\":\"Journal of Innovative Applied Mathematics and Computational Sciences\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Innovative Applied Mathematics and Computational Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58205/jiamcs.v2i2.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovative Applied Mathematics and Computational Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58205/jiamcs.v2i2.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Probability tail for linearly negative quadrant dependent random variables of partial sums and application to linear model
In this paper, we establish a new concentration inequality and complete convergence of weighted sums for arrays of rowwise linearly negative quadrant dependent (LNQD, in short) random variables and obtain a result dealing with complete convergence of first-order autoregressive processes with identically distributed LNQD innovations.