{"title":"基于模糊粗糙集理论和随机权值神经网络的高效分类模型","authors":"Rana Aamir Raza","doi":"10.54692/lgurjcsit.2021.0503224","DOIUrl":null,"url":null,"abstract":"In the area of fuzzy rough set theory (FRST), researchers have gained much interest in handling the high-dimensional data. Rough set theory (RST) is one of the important tools used to pre-process the data and helps to obtain a better predictive model, but in RST, the process of discretization may loss useful information. Therefore, fuzzy rough set theory contributes well with the real-valued data. In this paper, an efficient technique is presented based on Fuzzy rough set theory (FRST) to pre-process the large-scale data sets to increase the efficacy of the predictive model. Therefore, a fuzzy rough set-based feature selection (FRSFS) technique is associated with a Random weight neural network (RWNN) classifier to obtain the better generalization ability. Results on different dataset show that the proposed technique performs well and provides better speed and accuracy when compared by associating FRSFS with other machine learning classifiers (i.e., KNN, Naive Bayes, SVM, decision tree and backpropagation neural network).","PeriodicalId":197260,"journal":{"name":"Lahore Garrison University Research Journal of Computer Science and Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Classification Model using Fuzzy Rough Set Theory and Random Weight Neural Network\",\"authors\":\"Rana Aamir Raza\",\"doi\":\"10.54692/lgurjcsit.2021.0503224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the area of fuzzy rough set theory (FRST), researchers have gained much interest in handling the high-dimensional data. Rough set theory (RST) is one of the important tools used to pre-process the data and helps to obtain a better predictive model, but in RST, the process of discretization may loss useful information. Therefore, fuzzy rough set theory contributes well with the real-valued data. In this paper, an efficient technique is presented based on Fuzzy rough set theory (FRST) to pre-process the large-scale data sets to increase the efficacy of the predictive model. Therefore, a fuzzy rough set-based feature selection (FRSFS) technique is associated with a Random weight neural network (RWNN) classifier to obtain the better generalization ability. Results on different dataset show that the proposed technique performs well and provides better speed and accuracy when compared by associating FRSFS with other machine learning classifiers (i.e., KNN, Naive Bayes, SVM, decision tree and backpropagation neural network).\",\"PeriodicalId\":197260,\"journal\":{\"name\":\"Lahore Garrison University Research Journal of Computer Science and Information Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lahore Garrison University Research Journal of Computer Science and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54692/lgurjcsit.2021.0503224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lahore Garrison University Research Journal of Computer Science and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54692/lgurjcsit.2021.0503224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Efficient Classification Model using Fuzzy Rough Set Theory and Random Weight Neural Network
In the area of fuzzy rough set theory (FRST), researchers have gained much interest in handling the high-dimensional data. Rough set theory (RST) is one of the important tools used to pre-process the data and helps to obtain a better predictive model, but in RST, the process of discretization may loss useful information. Therefore, fuzzy rough set theory contributes well with the real-valued data. In this paper, an efficient technique is presented based on Fuzzy rough set theory (FRST) to pre-process the large-scale data sets to increase the efficacy of the predictive model. Therefore, a fuzzy rough set-based feature selection (FRSFS) technique is associated with a Random weight neural network (RWNN) classifier to obtain the better generalization ability. Results on different dataset show that the proposed technique performs well and provides better speed and accuracy when compared by associating FRSFS with other machine learning classifiers (i.e., KNN, Naive Bayes, SVM, decision tree and backpropagation neural network).