使用p样条和l1范数的单调限制分位数回归

K. Bollaerts, P. Eilers, M. Aerts
{"title":"使用p样条和l1范数的单调限制分位数回归","authors":"K. Bollaerts, P. Eilers, M. Aerts","doi":"10.1191/1471082X06st118oa","DOIUrl":null,"url":null,"abstract":"Quantile regression is an alternative to OLS regression. In quantile regression, the sum of absolute deviations or the L1-norm is minimized, whereas the sum of squared deviations or the L2-norm is minimized in OLS regression. Quantile regression has the advantage over OLS-regression of being more robust to outlying observations. Furthermore, quantile regression provides information complementing the information provided by OLS-regression. In this study, a non-parametric approach to quantile regression is presented, which constrains the estimated-quantile function to be monotone increasing. In particular, P-splines with an additional asymmetric penalty enforcing monotonicity are used within an L1-framework. This can be translated into a linear programming problem, which will be solved using an interior point algorithm. As an illustration, the presented approach will be applied to estimate quantile growth curves and quantile antibody levels as a function of age.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Quantile regression with monotonicity restrictions using P-splines and the L1-norm\",\"authors\":\"K. Bollaerts, P. Eilers, M. Aerts\",\"doi\":\"10.1191/1471082X06st118oa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantile regression is an alternative to OLS regression. In quantile regression, the sum of absolute deviations or the L1-norm is minimized, whereas the sum of squared deviations or the L2-norm is minimized in OLS regression. Quantile regression has the advantage over OLS-regression of being more robust to outlying observations. Furthermore, quantile regression provides information complementing the information provided by OLS-regression. In this study, a non-parametric approach to quantile regression is presented, which constrains the estimated-quantile function to be monotone increasing. In particular, P-splines with an additional asymmetric penalty enforcing monotonicity are used within an L1-framework. This can be translated into a linear programming problem, which will be solved using an interior point algorithm. As an illustration, the presented approach will be applied to estimate quantile growth curves and quantile antibody levels as a function of age.\",\"PeriodicalId\":354759,\"journal\":{\"name\":\"Statistical Modeling\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1191/1471082X06st118oa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X06st118oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

分位数回归是OLS回归的一种替代方法。在分位数回归中,绝对偏差的总和或l1 -范数被最小化,而在OLS回归中,平方偏差的总和或l2 -范数被最小化。分位数回归比ols回归的优点是对离群观测值更加稳健。此外,分位数回归提供的信息与ols回归提供的信息相补充。本文提出了一种非参数的分位数回归方法,该方法约束了估计的分位数函数是单调递增的。特别地,在l1框架中使用带有额外非对称惩罚的p样条来强制单调性。这可以转化为一个线性规划问题,它将使用内点算法来解决。作为一个例子,所提出的方法将被应用于估计分位数生长曲线和分位数抗体水平作为年龄的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantile regression with monotonicity restrictions using P-splines and the L1-norm
Quantile regression is an alternative to OLS regression. In quantile regression, the sum of absolute deviations or the L1-norm is minimized, whereas the sum of squared deviations or the L2-norm is minimized in OLS regression. Quantile regression has the advantage over OLS-regression of being more robust to outlying observations. Furthermore, quantile regression provides information complementing the information provided by OLS-regression. In this study, a non-parametric approach to quantile regression is presented, which constrains the estimated-quantile function to be monotone increasing. In particular, P-splines with an additional asymmetric penalty enforcing monotonicity are used within an L1-framework. This can be translated into a linear programming problem, which will be solved using an interior point algorithm. As an illustration, the presented approach will be applied to estimate quantile growth curves and quantile antibody levels as a function of age.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信