Mahmud Ibrahim, Shantanu Rahman, Muhammad Samin Hasan, Minhaj Uddin Ahmad, Abdullah Abrar
{"title":"基于流的多同质无人机室外编队飞行路径规划","authors":"Mahmud Ibrahim, Shantanu Rahman, Muhammad Samin Hasan, Minhaj Uddin Ahmad, Abdullah Abrar","doi":"10.1109/ICMERR56497.2022.10097797","DOIUrl":null,"url":null,"abstract":"Collision-free path planning is the most crucial component in multi-UAV formation-flying (MFF). We use unlabeled homogenous quadcopters (UAVs) to demonstrate the use of a flow network to create complete (inter-UAV) collision-free paths. This procedure has three main parts: 1) Creating a flow network graph from physical GPS coordinates, 2) Finding a path of minimum cost (least distance) using any graph-based path-finding algorithm, and 3) Implementing the Ford-Fulkerson Method to find the paths with the maximum flow (no collision). Simulations of up to 64 UAVs were conducted for various formations, followed by a practical experiment with 3 quadcopters for testing physical plausibility and feasibility. The results of these tests show the efficacy of this method's ability to produce safe, collision-free paths.","PeriodicalId":302481,"journal":{"name":"2022 7th International Conference on Mechanical Engineering and Robotics Research (ICMERR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow-Based Path Planning for Multiple Homogenous UAVs for Outdoor Formation-Flying\",\"authors\":\"Mahmud Ibrahim, Shantanu Rahman, Muhammad Samin Hasan, Minhaj Uddin Ahmad, Abdullah Abrar\",\"doi\":\"10.1109/ICMERR56497.2022.10097797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collision-free path planning is the most crucial component in multi-UAV formation-flying (MFF). We use unlabeled homogenous quadcopters (UAVs) to demonstrate the use of a flow network to create complete (inter-UAV) collision-free paths. This procedure has three main parts: 1) Creating a flow network graph from physical GPS coordinates, 2) Finding a path of minimum cost (least distance) using any graph-based path-finding algorithm, and 3) Implementing the Ford-Fulkerson Method to find the paths with the maximum flow (no collision). Simulations of up to 64 UAVs were conducted for various formations, followed by a practical experiment with 3 quadcopters for testing physical plausibility and feasibility. The results of these tests show the efficacy of this method's ability to produce safe, collision-free paths.\",\"PeriodicalId\":302481,\"journal\":{\"name\":\"2022 7th International Conference on Mechanical Engineering and Robotics Research (ICMERR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Mechanical Engineering and Robotics Research (ICMERR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMERR56497.2022.10097797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Mechanical Engineering and Robotics Research (ICMERR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMERR56497.2022.10097797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flow-Based Path Planning for Multiple Homogenous UAVs for Outdoor Formation-Flying
Collision-free path planning is the most crucial component in multi-UAV formation-flying (MFF). We use unlabeled homogenous quadcopters (UAVs) to demonstrate the use of a flow network to create complete (inter-UAV) collision-free paths. This procedure has three main parts: 1) Creating a flow network graph from physical GPS coordinates, 2) Finding a path of minimum cost (least distance) using any graph-based path-finding algorithm, and 3) Implementing the Ford-Fulkerson Method to find the paths with the maximum flow (no collision). Simulations of up to 64 UAVs were conducted for various formations, followed by a practical experiment with 3 quadcopters for testing physical plausibility and feasibility. The results of these tests show the efficacy of this method's ability to produce safe, collision-free paths.