共享任务:多标签宣传检测的大语言模型

Tanmay Chavan, Aditya Kane
{"title":"共享任务:多标签宣传检测的大语言模型","authors":"Tanmay Chavan, Aditya Kane","doi":"10.18653/v1/2022.wanlp-1.60","DOIUrl":null,"url":null,"abstract":"The spread of propaganda through the internet has increased drastically over the past years. Lately, propaganda detection has started gaining importance because of the negative impact it has on society. In this work, we describe our approach for the WANLP 2022 shared task which handles the task of propaganda detection in a multi-label setting. The task demands the model to label the given text as having one or more types of propaganda techniques. There are a total of 21 propaganda techniques to be detected. We show that an ensemble of five models performs the best on the task, scoring a micro-F1 score of 59.73%. We also conduct comprehensive ablations and propose various future directions for this work.","PeriodicalId":355149,"journal":{"name":"Workshop on Arabic Natural Language Processing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ChavanKane at WANLP 2022 Shared Task: Large Language Models for Multi-label Propaganda Detection\",\"authors\":\"Tanmay Chavan, Aditya Kane\",\"doi\":\"10.18653/v1/2022.wanlp-1.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spread of propaganda through the internet has increased drastically over the past years. Lately, propaganda detection has started gaining importance because of the negative impact it has on society. In this work, we describe our approach for the WANLP 2022 shared task which handles the task of propaganda detection in a multi-label setting. The task demands the model to label the given text as having one or more types of propaganda techniques. There are a total of 21 propaganda techniques to be detected. We show that an ensemble of five models performs the best on the task, scoring a micro-F1 score of 59.73%. We also conduct comprehensive ablations and propose various future directions for this work.\",\"PeriodicalId\":355149,\"journal\":{\"name\":\"Workshop on Arabic Natural Language Processing\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Arabic Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.wanlp-1.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Arabic Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.wanlp-1.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在过去的几年里,通过互联网传播的宣传急剧增加。最近,由于对社会的负面影响,宣传检测开始变得越来越重要。在这项工作中,我们描述了我们的WANLP 2022共享任务的方法,该任务处理多标签设置中的宣传检测任务。该任务要求模型将给定文本标记为具有一种或多种类型的宣传技术。总共有21种宣传手段有待检测。我们发现,五个模型的集合在任务上表现最好,微f1得分为59.73%。我们还进行了全面的消融,并提出了这项工作的各种未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ChavanKane at WANLP 2022 Shared Task: Large Language Models for Multi-label Propaganda Detection
The spread of propaganda through the internet has increased drastically over the past years. Lately, propaganda detection has started gaining importance because of the negative impact it has on society. In this work, we describe our approach for the WANLP 2022 shared task which handles the task of propaganda detection in a multi-label setting. The task demands the model to label the given text as having one or more types of propaganda techniques. There are a total of 21 propaganda techniques to be detected. We show that an ensemble of five models performs the best on the task, scoring a micro-F1 score of 59.73%. We also conduct comprehensive ablations and propose various future directions for this work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信