使用骨架进行对象对齐的3D变换的自动估计

Tao Wang, A. Basu
{"title":"使用骨架进行对象对齐的3D变换的自动估计","authors":"Tao Wang, A. Basu","doi":"10.1109/ICPR.2006.298","DOIUrl":null,"url":null,"abstract":"An algorithm for automatic estimation of 3D transformations between two objects is presented in this paper. Skeletons of the 3D objects are created using a fully parallel thinning technique, feature point pairs (land markers) are automatically extracted from skeletons, and a least squares method is applied to solve an over determined linear system to estimate the 3D transformation matrix. Experiments show that this method is quite accurate when the translations and rotation angles are small, even when there is some noise in the data. The estimation process requires about 2 seconds on an Intel Centrino Laptop with 512 MB memory, for a complex model with about 37,000 object points and 500 object points for its skeletons","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automatic Estimation of 3D Transformations using Skeletons for Object Alignment\",\"authors\":\"Tao Wang, A. Basu\",\"doi\":\"10.1109/ICPR.2006.298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm for automatic estimation of 3D transformations between two objects is presented in this paper. Skeletons of the 3D objects are created using a fully parallel thinning technique, feature point pairs (land markers) are automatically extracted from skeletons, and a least squares method is applied to solve an over determined linear system to estimate the 3D transformation matrix. Experiments show that this method is quite accurate when the translations and rotation angles are small, even when there is some noise in the data. The estimation process requires about 2 seconds on an Intel Centrino Laptop with 512 MB memory, for a complex model with about 37,000 object points and 500 object points for its skeletons\",\"PeriodicalId\":236033,\"journal\":{\"name\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2006.298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种自动估计两目标间三维变换的算法。采用完全平行细化技术创建三维物体骨架,自动提取特征点对(陆地标记),并应用最小二乘法求解过定线性系统来估计三维变换矩阵。实验表明,该方法在平移角和旋转角较小的情况下,即使在数据中存在噪声的情况下,也具有较高的精度。对于一个包含37,000个对象点和500个对象点的复杂模型,在内存为512 MB的英特尔迅驰笔记本电脑上,估计过程大约需要2秒
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Estimation of 3D Transformations using Skeletons for Object Alignment
An algorithm for automatic estimation of 3D transformations between two objects is presented in this paper. Skeletons of the 3D objects are created using a fully parallel thinning technique, feature point pairs (land markers) are automatically extracted from skeletons, and a least squares method is applied to solve an over determined linear system to estimate the 3D transformation matrix. Experiments show that this method is quite accurate when the translations and rotation angles are small, even when there is some noise in the data. The estimation process requires about 2 seconds on an Intel Centrino Laptop with 512 MB memory, for a complex model with about 37,000 object points and 500 object points for its skeletons
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信