DNLM-MA-P:具有移动平均和对称加权的欺骗非局部均值滤波器的并行化

Saúl Calderón Ramírez, Jorge Castro, Manuel Zurnbado
{"title":"DNLM-MA-P:具有移动平均和对称加权的欺骗非局部均值滤波器的并行化","authors":"Saúl Calderón Ramírez, Jorge Castro, Manuel Zurnbado","doi":"10.1109/IWOBI.2018.8464180","DOIUrl":null,"url":null,"abstract":"This paper presents a novel computational optimization of the deceived non local means filter using moving average and symmetric weighting. The proposed optimization is compared with different approaches that reduce the computational cost of the deceived non local means filter. Furthermore, the impact of parallelizing different optimization approaches is assessed by evaluating the execution time and scalability in Xeon Phi KNL architecture. The proposed optimization for the sequential implementation achieved a 90x speedup, while its parallelized implementation yielded a speedup of up to 1662x.","PeriodicalId":127078,"journal":{"name":"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"DNLM-MA-P: A Parallelization of the Deceived Non Local Means Filter with Moving Average and Symmetric Weighting\",\"authors\":\"Saúl Calderón Ramírez, Jorge Castro, Manuel Zurnbado\",\"doi\":\"10.1109/IWOBI.2018.8464180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel computational optimization of the deceived non local means filter using moving average and symmetric weighting. The proposed optimization is compared with different approaches that reduce the computational cost of the deceived non local means filter. Furthermore, the impact of parallelizing different optimization approaches is assessed by evaluating the execution time and scalability in Xeon Phi KNL architecture. The proposed optimization for the sequential implementation achieved a 90x speedup, while its parallelized implementation yielded a speedup of up to 1662x.\",\"PeriodicalId\":127078,\"journal\":{\"name\":\"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWOBI.2018.8464180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI.2018.8464180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种利用移动平均和对称加权对欺骗性非局部均值滤波器进行计算优化的新方法。并将所提出的优化方法与降低欺骗非局部均值滤波器计算量的不同方法进行了比较。此外,通过评估Xeon Phi KNL架构的执行时间和可扩展性来评估并行化不同优化方法的影响。针对顺序实现提出的优化实现了90倍的加速,而其并行化实现则产生了高达1662倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DNLM-MA-P: A Parallelization of the Deceived Non Local Means Filter with Moving Average and Symmetric Weighting
This paper presents a novel computational optimization of the deceived non local means filter using moving average and symmetric weighting. The proposed optimization is compared with different approaches that reduce the computational cost of the deceived non local means filter. Furthermore, the impact of parallelizing different optimization approaches is assessed by evaluating the execution time and scalability in Xeon Phi KNL architecture. The proposed optimization for the sequential implementation achieved a 90x speedup, while its parallelized implementation yielded a speedup of up to 1662x.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信