基于顺序最小化优化随机森林的智能家居可穿戴传感器评估

Neeraj Gupta, S. Janani, R. Dilip, Ravi Hosur, Abhay Chaturvedi, Ankur Gupta
{"title":"基于顺序最小化优化随机森林的智能家居可穿戴传感器评估","authors":"Neeraj Gupta, S. Janani, R. Dilip, Ravi Hosur, Abhay Chaturvedi, Ankur Gupta","doi":"10.17762/ijcnis.v14i2.5499","DOIUrl":null,"url":null,"abstract":"In our everyday life records, human activity identification utilizing MotionNode sensors is becoming more and more prominent. A difficult issue in ubiquitous computing and HCI is providing reliable data on human actions and behaviors. In this study, we put forward a practical methodology for incorporating statistical data into Sequential Minimization Optimization-based random forests. In order to extract useful features, we first prepared a 1-Dimensional Hadamard transform wavelet and a 1-Dimensional Local Binary Pattern-dependent extraction technique. Over two benchmark datasets, the University of Southern California-Human Activities Dataset, and the IM-Sporting Behaviors datasets, we employed sequential minimum optimization together with Random Forest to classify activities. Experimental findings demonstrate that our suggested model may successfully be utilized to identify strong human actions for matters related to efficiency and accuracy, and may challenge with existing cutting-edge approaches.","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Wearable Sensors for Evaluation Over Smart Home Using Sequential Minimization Optimization-based Random Forest\",\"authors\":\"Neeraj Gupta, S. Janani, R. Dilip, Ravi Hosur, Abhay Chaturvedi, Ankur Gupta\",\"doi\":\"10.17762/ijcnis.v14i2.5499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our everyday life records, human activity identification utilizing MotionNode sensors is becoming more and more prominent. A difficult issue in ubiquitous computing and HCI is providing reliable data on human actions and behaviors. In this study, we put forward a practical methodology for incorporating statistical data into Sequential Minimization Optimization-based random forests. In order to extract useful features, we first prepared a 1-Dimensional Hadamard transform wavelet and a 1-Dimensional Local Binary Pattern-dependent extraction technique. Over two benchmark datasets, the University of Southern California-Human Activities Dataset, and the IM-Sporting Behaviors datasets, we employed sequential minimum optimization together with Random Forest to classify activities. Experimental findings demonstrate that our suggested model may successfully be utilized to identify strong human actions for matters related to efficiency and accuracy, and may challenge with existing cutting-edge approaches.\",\"PeriodicalId\":232613,\"journal\":{\"name\":\"Int. J. Commun. Networks Inf. Secur.\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Commun. Networks Inf. Secur.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17762/ijcnis.v14i2.5499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Commun. Networks Inf. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17762/ijcnis.v14i2.5499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在我们的日常生活记录中,利用MotionNode传感器进行人体活动识别变得越来越突出。普适计算和HCI中的一个难题是提供关于人类行为和行为的可靠数据。在这项研究中,我们提出了一种实用的方法,将统计数据纳入基于顺序最小化优化的随机森林。为了提取有用的特征,我们首先制备了一维Hadamard变换小波和一维局部二值模式相关提取技术。在两个基准数据集上,南加州大学人类活动数据集和im运动行为数据集,我们使用顺序最小优化和随机森林来对活动进行分类。实验结果表明,我们提出的模型可以成功地用于识别与效率和准确性相关的强烈人类行为,并可能挑战现有的前沿方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wearable Sensors for Evaluation Over Smart Home Using Sequential Minimization Optimization-based Random Forest
In our everyday life records, human activity identification utilizing MotionNode sensors is becoming more and more prominent. A difficult issue in ubiquitous computing and HCI is providing reliable data on human actions and behaviors. In this study, we put forward a practical methodology for incorporating statistical data into Sequential Minimization Optimization-based random forests. In order to extract useful features, we first prepared a 1-Dimensional Hadamard transform wavelet and a 1-Dimensional Local Binary Pattern-dependent extraction technique. Over two benchmark datasets, the University of Southern California-Human Activities Dataset, and the IM-Sporting Behaviors datasets, we employed sequential minimum optimization together with Random Forest to classify activities. Experimental findings demonstrate that our suggested model may successfully be utilized to identify strong human actions for matters related to efficiency and accuracy, and may challenge with existing cutting-edge approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信