表面肌电信号的ceemdan -小波阈值去噪方法

Jianwei Fang, Liye Ren, Junyi Tian, Guisong Li
{"title":"表面肌电信号的ceemdan -小波阈值去噪方法","authors":"Jianwei Fang, Liye Ren, Junyi Tian, Guisong Li","doi":"10.1145/3571532.3571554","DOIUrl":null,"url":null,"abstract":"In view of the fact that the collected sEMG signal contains a lot of noise, which makes it impossible to accurately identify and analyze the signal, this paper proposes a method that complete ensemble empirical mode decomposition with adaptive noise and wavelet layered threshold denoising to achieve accurate signal identification and analysis. The method is to first calculate the correlation coefficient after CEEMDAN(Cemplete Ensemple Empirical Mode Decomposition with Adaptive Noise) decomposition, and then denoise the first three IMFs after decomposition, and then reconstruct, and then perform wavelet layered threshold denoising after reconstruction. After experimental comparison, it is found that the denoising effect of designing such a denoising algorithm is better than other different global thresholds and separate layered threshold denoising.","PeriodicalId":355088,"journal":{"name":"Proceedings of the 2022 11th International Conference on Bioinformatics and Biomedical Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CEEMDAN-Wavelet Threshold Denoising Method on sEMG\",\"authors\":\"Jianwei Fang, Liye Ren, Junyi Tian, Guisong Li\",\"doi\":\"10.1145/3571532.3571554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the fact that the collected sEMG signal contains a lot of noise, which makes it impossible to accurately identify and analyze the signal, this paper proposes a method that complete ensemble empirical mode decomposition with adaptive noise and wavelet layered threshold denoising to achieve accurate signal identification and analysis. The method is to first calculate the correlation coefficient after CEEMDAN(Cemplete Ensemple Empirical Mode Decomposition with Adaptive Noise) decomposition, and then denoise the first three IMFs after decomposition, and then reconstruct, and then perform wavelet layered threshold denoising after reconstruction. After experimental comparison, it is found that the denoising effect of designing such a denoising algorithm is better than other different global thresholds and separate layered threshold denoising.\",\"PeriodicalId\":355088,\"journal\":{\"name\":\"Proceedings of the 2022 11th International Conference on Bioinformatics and Biomedical Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 11th International Conference on Bioinformatics and Biomedical Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3571532.3571554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 11th International Conference on Bioinformatics and Biomedical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3571532.3571554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对采集到的表面肌电信号中含有大量噪声,无法对信号进行准确识别和分析的问题,本文提出了一种采用自适应噪声和小波分层阈值去噪的方法来完成系综经验模态分解,实现对信号的准确识别和分析。该方法首先计算CEEMDAN(complete Ensemple Empirical Mode Decomposition with Adaptive Noise)分解后的相关系数,然后对分解后的前三个IMFs进行去噪,再进行重构,重构后进行小波分层阈值去噪。经过实验对比,发现设计的这种去噪算法的去噪效果优于其他不同的全局阈值和分层阈值去噪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CEEMDAN-Wavelet Threshold Denoising Method on sEMG
In view of the fact that the collected sEMG signal contains a lot of noise, which makes it impossible to accurately identify and analyze the signal, this paper proposes a method that complete ensemble empirical mode decomposition with adaptive noise and wavelet layered threshold denoising to achieve accurate signal identification and analysis. The method is to first calculate the correlation coefficient after CEEMDAN(Cemplete Ensemple Empirical Mode Decomposition with Adaptive Noise) decomposition, and then denoise the first three IMFs after decomposition, and then reconstruct, and then perform wavelet layered threshold denoising after reconstruction. After experimental comparison, it is found that the denoising effect of designing such a denoising algorithm is better than other different global thresholds and separate layered threshold denoising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信