基于统计判别器的互联网流量分类方法

R. H. Filho, M. F. F. D. Carmo, J. Maia, G. P. Siqueira
{"title":"基于统计判别器的互联网流量分类方法","authors":"R. H. Filho, M. F. F. D. Carmo, J. Maia, G. P. Siqueira","doi":"10.1109/NOMS.2008.4575244","DOIUrl":null,"url":null,"abstract":"This work presents an Internet traffic classification methodology based on statistical discriminators and cluster analysis. An accuracy identification of Internet applications is an important research area, because it is directly related to solve many network problems such as: quality of service (QoS), traffic control, security, network management and operation. The main difference to previous approaches lies in the discriminators use; rather than using only one set of discriminators for all classes we use a set of different statistical discriminators for each traffic class. Using real traces into the training and classification phases, we validated the methodology for P2P traffic class.","PeriodicalId":368139,"journal":{"name":"NOMS 2008 - 2008 IEEE Network Operations and Management Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"An Internet traffic classification methodology based on statistical discriminators\",\"authors\":\"R. H. Filho, M. F. F. D. Carmo, J. Maia, G. P. Siqueira\",\"doi\":\"10.1109/NOMS.2008.4575244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents an Internet traffic classification methodology based on statistical discriminators and cluster analysis. An accuracy identification of Internet applications is an important research area, because it is directly related to solve many network problems such as: quality of service (QoS), traffic control, security, network management and operation. The main difference to previous approaches lies in the discriminators use; rather than using only one set of discriminators for all classes we use a set of different statistical discriminators for each traffic class. Using real traces into the training and classification phases, we validated the methodology for P2P traffic class.\",\"PeriodicalId\":368139,\"journal\":{\"name\":\"NOMS 2008 - 2008 IEEE Network Operations and Management Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NOMS 2008 - 2008 IEEE Network Operations and Management Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NOMS.2008.4575244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NOMS 2008 - 2008 IEEE Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOMS.2008.4575244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出了一种基于统计判别器和聚类分析的互联网流量分类方法。互联网应用的准确识别是一个重要的研究领域,因为它直接关系到服务质量(QoS)、流量控制、安全、网络管理和运营等许多网络问题的解决。与以往方法的主要区别在于鉴别器的使用;我们不是对所有类使用一组鉴别器,而是对每个流量类使用一组不同的统计鉴别器。使用真实轨迹进入训练和分类阶段,我们验证了P2P流量分类的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Internet traffic classification methodology based on statistical discriminators
This work presents an Internet traffic classification methodology based on statistical discriminators and cluster analysis. An accuracy identification of Internet applications is an important research area, because it is directly related to solve many network problems such as: quality of service (QoS), traffic control, security, network management and operation. The main difference to previous approaches lies in the discriminators use; rather than using only one set of discriminators for all classes we use a set of different statistical discriminators for each traffic class. Using real traces into the training and classification phases, we validated the methodology for P2P traffic class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信