基于强化学习的混合拆装线优化

GuiPeng Xi, Jiacun Wang, Xiwang Guo, Shixin Liu, Shujin Qin, Liang Qi
{"title":"基于强化学习的混合拆装线优化","authors":"GuiPeng Xi, Jiacun Wang, Xiwang Guo, Shixin Liu, Shujin Qin, Liang Qi","doi":"10.1109/WOCC58016.2023.10139382","DOIUrl":null,"url":null,"abstract":"This paper explores the benefits of combining a U-shaped disassembly line with a single-row linear disassembly line for specific scenarios. To address the balancing problem that arises with such a hybrid disassembly line, the authors establish a mathe-matical model aimed at maximizing recovery profit. The Soft Actor-Critic (SAC) algorithm is proposed to find the solution, taking into account the characteristics of the problem. The performance of the SAC algorithm is compared to the Advantage Actor-Critic (A2C) algorithm, Deep Deterministic Policy Gradient (DDPG). The results demonstrate that the SAC algorithm is capable of achieving an approximately optimal result for small-scale cases and outperforms DDPG, A2C in solving large-scale disassembly cases.","PeriodicalId":226792,"journal":{"name":"2023 32nd Wireless and Optical Communications Conference (WOCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Disassembly Line Optimization with Reinforcement Learning\",\"authors\":\"GuiPeng Xi, Jiacun Wang, Xiwang Guo, Shixin Liu, Shujin Qin, Liang Qi\",\"doi\":\"10.1109/WOCC58016.2023.10139382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the benefits of combining a U-shaped disassembly line with a single-row linear disassembly line for specific scenarios. To address the balancing problem that arises with such a hybrid disassembly line, the authors establish a mathe-matical model aimed at maximizing recovery profit. The Soft Actor-Critic (SAC) algorithm is proposed to find the solution, taking into account the characteristics of the problem. The performance of the SAC algorithm is compared to the Advantage Actor-Critic (A2C) algorithm, Deep Deterministic Policy Gradient (DDPG). The results demonstrate that the SAC algorithm is capable of achieving an approximately optimal result for small-scale cases and outperforms DDPG, A2C in solving large-scale disassembly cases.\",\"PeriodicalId\":226792,\"journal\":{\"name\":\"2023 32nd Wireless and Optical Communications Conference (WOCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 32nd Wireless and Optical Communications Conference (WOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOCC58016.2023.10139382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 32nd Wireless and Optical Communications Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC58016.2023.10139382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了将u形拆解线与单行线性拆解线结合在特定场景下的好处。为了解决这种混合拆解线所产生的平衡问题,作者建立了一个旨在最大化回收利润的数学模型。针对该问题的特点,提出了软行为-评价(SAC)算法求解该问题。将SAC算法的性能与优势参与者-批评者(A2C)算法、深度确定性策略梯度(DDPG)算法进行比较。结果表明,SAC算法在求解大规模拆装问题时能够获得近似最优解,优于DDPG、A2C算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Disassembly Line Optimization with Reinforcement Learning
This paper explores the benefits of combining a U-shaped disassembly line with a single-row linear disassembly line for specific scenarios. To address the balancing problem that arises with such a hybrid disassembly line, the authors establish a mathe-matical model aimed at maximizing recovery profit. The Soft Actor-Critic (SAC) algorithm is proposed to find the solution, taking into account the characteristics of the problem. The performance of the SAC algorithm is compared to the Advantage Actor-Critic (A2C) algorithm, Deep Deterministic Policy Gradient (DDPG). The results demonstrate that the SAC algorithm is capable of achieving an approximately optimal result for small-scale cases and outperforms DDPG, A2C in solving large-scale disassembly cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信