{"title":"光热偏转光谱法测量衬底薄膜系统热接触电阻的可行性","authors":"J. Foley, C. Avedisian","doi":"10.1115/imece2001/htd-24276","DOIUrl":null,"url":null,"abstract":"\n In this paper we extend the theory of photothermal deflection spectroscopy for an isotropic film-on-substrate system to include the thermal contact resistance between the two materials and absorption of energy in the film and substrate. The model is formulated as a three-domain system (gas, film and substrate) with coupling conditions at the various interfaces, including a thermal contact resistance. Closed form expressions are obtained for the temperatures in each domain.\n The analysis for probe beam deflection is confirmed by comparison to well-known limits of infinite film thickness, zero film thickness, zero contact resistance, and a thin absorbing layer at the surface of the film. The formulations are tested against NIST standard reference materials (SRM) using numerically generated beam deflection data to extract thermal diffusivity of a bulk material, and of two SRMs pressed together to extract thermal contact resistance. The results show the feasibility of using to determine the thermal contact resistance of a layered sample from beam deflection data.","PeriodicalId":426926,"journal":{"name":"Heat Transfer: Volume 4 — Combustion and Energy Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Feasibility of Using Photothermal Deflection Spectroscopy to Measure Thermal Contact Resistance in a Film on Substrate System\",\"authors\":\"J. Foley, C. Avedisian\",\"doi\":\"10.1115/imece2001/htd-24276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper we extend the theory of photothermal deflection spectroscopy for an isotropic film-on-substrate system to include the thermal contact resistance between the two materials and absorption of energy in the film and substrate. The model is formulated as a three-domain system (gas, film and substrate) with coupling conditions at the various interfaces, including a thermal contact resistance. Closed form expressions are obtained for the temperatures in each domain.\\n The analysis for probe beam deflection is confirmed by comparison to well-known limits of infinite film thickness, zero film thickness, zero contact resistance, and a thin absorbing layer at the surface of the film. The formulations are tested against NIST standard reference materials (SRM) using numerically generated beam deflection data to extract thermal diffusivity of a bulk material, and of two SRMs pressed together to extract thermal contact resistance. The results show the feasibility of using to determine the thermal contact resistance of a layered sample from beam deflection data.\",\"PeriodicalId\":426926,\"journal\":{\"name\":\"Heat Transfer: Volume 4 — Combustion and Energy Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer: Volume 4 — Combustion and Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2001/htd-24276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4 — Combustion and Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/htd-24276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Feasibility of Using Photothermal Deflection Spectroscopy to Measure Thermal Contact Resistance in a Film on Substrate System
In this paper we extend the theory of photothermal deflection spectroscopy for an isotropic film-on-substrate system to include the thermal contact resistance between the two materials and absorption of energy in the film and substrate. The model is formulated as a three-domain system (gas, film and substrate) with coupling conditions at the various interfaces, including a thermal contact resistance. Closed form expressions are obtained for the temperatures in each domain.
The analysis for probe beam deflection is confirmed by comparison to well-known limits of infinite film thickness, zero film thickness, zero contact resistance, and a thin absorbing layer at the surface of the film. The formulations are tested against NIST standard reference materials (SRM) using numerically generated beam deflection data to extract thermal diffusivity of a bulk material, and of two SRMs pressed together to extract thermal contact resistance. The results show the feasibility of using to determine the thermal contact resistance of a layered sample from beam deflection data.