面向网络物理系统群的节点聚类算法

Christos Sad, K. Siozios
{"title":"面向网络物理系统群的节点聚类算法","authors":"Christos Sad, K. Siozios","doi":"10.1109/mocast54814.2022.9837579","DOIUrl":null,"url":null,"abstract":"The increased number of nodes found in next-generation systems, such as the swarm of CyberPhysical nodes, impose new challenges related to their organization. Throughout this paper a novel algorithm aiming to address this problem, is introduced. The proposed solution relies on a public-available genetic algorithm. Experimental results highlight the superiority of introduced solution, as it achieves superior performance as compared to well-established relevant algorithms.","PeriodicalId":122414,"journal":{"name":"2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An algorithm for node clustering targeting swarm of cyberphysical systems\",\"authors\":\"Christos Sad, K. Siozios\",\"doi\":\"10.1109/mocast54814.2022.9837579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increased number of nodes found in next-generation systems, such as the swarm of CyberPhysical nodes, impose new challenges related to their organization. Throughout this paper a novel algorithm aiming to address this problem, is introduced. The proposed solution relies on a public-available genetic algorithm. Experimental results highlight the superiority of introduced solution, as it achieves superior performance as compared to well-established relevant algorithms.\",\"PeriodicalId\":122414,\"journal\":{\"name\":\"2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mocast54814.2022.9837579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mocast54814.2022.9837579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

下一代系统中节点数量的增加,比如网络物理节点群,给它们的组织带来了新的挑战。本文介绍了一种新的算法来解决这个问题。提出的解决方案依赖于一种公开可用的遗传算法。实验结果突出了所引入的解决方案的优越性,因为与已建立的相关算法相比,它具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An algorithm for node clustering targeting swarm of cyberphysical systems
The increased number of nodes found in next-generation systems, such as the swarm of CyberPhysical nodes, impose new challenges related to their organization. Throughout this paper a novel algorithm aiming to address this problem, is introduced. The proposed solution relies on a public-available genetic algorithm. Experimental results highlight the superiority of introduced solution, as it achieves superior performance as compared to well-established relevant algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信