{"title":"自动驾驶汽车在线图像传感器故障检测","authors":"Yizhi Chen, Wenyao Zhu, Dejiu Chen, Zhonghai Lu","doi":"10.1109/MCSoC57363.2022.00028","DOIUrl":null,"url":null,"abstract":"Automated driving vehicles have shown glorious potential in the near future market due to the high safety and convenience for drivers and passengers. Image sensors' reliability attract many researchers' interests as many image sensors are used in autonomous vehicles. We propose an online image sensor fault detection method based on comparing the historical variances of normal pixels and defective pixels to detect faults. For fault pixels without uncertainty, with a detecting window of more than 30 frames, we get 100% accuracy and 100% recall on realistic continuous traffic pictures from the KITTI data set. We also explore the influence of fault pixel values' uncertainty from 0% to 25% and study different fixed thresholds and a dynamic threshold for judgments. Strict threshold, which is 0.1, has a high accuracy (99.16%) but has a low recall (34.46%) for 15% uncertainty. Loose threshold, which is 0.3, has a relatively high recall (83.78%) but mistakes too many normal pixels with 18.17% accuracy for 15% uncertainty. Our dynamic threshold balances the accuracy and recall. It gets 100% accuracy and 58.69% recall for 5% uncertainty and 78.38% accuracy and 55.39% recall for 15% uncertainty. Based on the detected damage pixel rate, we develop a health score for evaluating the image sensor system intuitively. It can also be helpful for making decision about replacing cameras.","PeriodicalId":150801,"journal":{"name":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Image Sensor Fault Detection for Autonomous Vehicles\",\"authors\":\"Yizhi Chen, Wenyao Zhu, Dejiu Chen, Zhonghai Lu\",\"doi\":\"10.1109/MCSoC57363.2022.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated driving vehicles have shown glorious potential in the near future market due to the high safety and convenience for drivers and passengers. Image sensors' reliability attract many researchers' interests as many image sensors are used in autonomous vehicles. We propose an online image sensor fault detection method based on comparing the historical variances of normal pixels and defective pixels to detect faults. For fault pixels without uncertainty, with a detecting window of more than 30 frames, we get 100% accuracy and 100% recall on realistic continuous traffic pictures from the KITTI data set. We also explore the influence of fault pixel values' uncertainty from 0% to 25% and study different fixed thresholds and a dynamic threshold for judgments. Strict threshold, which is 0.1, has a high accuracy (99.16%) but has a low recall (34.46%) for 15% uncertainty. Loose threshold, which is 0.3, has a relatively high recall (83.78%) but mistakes too many normal pixels with 18.17% accuracy for 15% uncertainty. Our dynamic threshold balances the accuracy and recall. It gets 100% accuracy and 58.69% recall for 5% uncertainty and 78.38% accuracy and 55.39% recall for 15% uncertainty. Based on the detected damage pixel rate, we develop a health score for evaluating the image sensor system intuitively. It can also be helpful for making decision about replacing cameras.\",\"PeriodicalId\":150801,\"journal\":{\"name\":\"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSoC57363.2022.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC57363.2022.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Online Image Sensor Fault Detection for Autonomous Vehicles
Automated driving vehicles have shown glorious potential in the near future market due to the high safety and convenience for drivers and passengers. Image sensors' reliability attract many researchers' interests as many image sensors are used in autonomous vehicles. We propose an online image sensor fault detection method based on comparing the historical variances of normal pixels and defective pixels to detect faults. For fault pixels without uncertainty, with a detecting window of more than 30 frames, we get 100% accuracy and 100% recall on realistic continuous traffic pictures from the KITTI data set. We also explore the influence of fault pixel values' uncertainty from 0% to 25% and study different fixed thresholds and a dynamic threshold for judgments. Strict threshold, which is 0.1, has a high accuracy (99.16%) but has a low recall (34.46%) for 15% uncertainty. Loose threshold, which is 0.3, has a relatively high recall (83.78%) but mistakes too many normal pixels with 18.17% accuracy for 15% uncertainty. Our dynamic threshold balances the accuracy and recall. It gets 100% accuracy and 58.69% recall for 5% uncertainty and 78.38% accuracy and 55.39% recall for 15% uncertainty. Based on the detected damage pixel rate, we develop a health score for evaluating the image sensor system intuitively. It can also be helpful for making decision about replacing cameras.