一类非线性系统的神经网络在线解耦

Xinli Li, Yan Bai, L. Yang
{"title":"一类非线性系统的神经网络在线解耦","authors":"Xinli Li, Yan Bai, L. Yang","doi":"10.1109/WCICA.2006.1712900","DOIUrl":null,"url":null,"abstract":"Aim at a class of nonlinear MIMO systems, the neural networks online decoupling algorithm is proposed. The elitist genetic algorithms and hybrid genetic algorithms are adopted respectively to train the neural networks in order to compensate coupling effect. Based on analysis of the convergence of the genetic algorithms, the feasibility of the online decoupling algorithm is discussed. The effectiveness of the algorithm has been shown by numerical simulations combing nonlinear MIMO system","PeriodicalId":375135,"journal":{"name":"2006 6th World Congress on Intelligent Control and Automation","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Neural Network Online Decoupling for a Class of Nonlinear System\",\"authors\":\"Xinli Li, Yan Bai, L. Yang\",\"doi\":\"10.1109/WCICA.2006.1712900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim at a class of nonlinear MIMO systems, the neural networks online decoupling algorithm is proposed. The elitist genetic algorithms and hybrid genetic algorithms are adopted respectively to train the neural networks in order to compensate coupling effect. Based on analysis of the convergence of the genetic algorithms, the feasibility of the online decoupling algorithm is discussed. The effectiveness of the algorithm has been shown by numerical simulations combing nonlinear MIMO system\",\"PeriodicalId\":375135,\"journal\":{\"name\":\"2006 6th World Congress on Intelligent Control and Automation\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 6th World Congress on Intelligent Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCICA.2006.1712900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 6th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2006.1712900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

针对一类非线性多输入多输出系统,提出了一种神经网络在线解耦算法。分别采用最优遗传算法和混合遗传算法对神经网络进行训练,以补偿耦合效应。在分析遗传算法收敛性的基础上,讨论了在线解耦算法的可行性。结合非线性MIMO系统的数值仿真验证了该算法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network Online Decoupling for a Class of Nonlinear System
Aim at a class of nonlinear MIMO systems, the neural networks online decoupling algorithm is proposed. The elitist genetic algorithms and hybrid genetic algorithms are adopted respectively to train the neural networks in order to compensate coupling effect. Based on analysis of the convergence of the genetic algorithms, the feasibility of the online decoupling algorithm is discussed. The effectiveness of the algorithm has been shown by numerical simulations combing nonlinear MIMO system
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信