{"title":"[空间频率限制和鸽子视觉系统的分辨能力]。","authors":"M A Pak, S J Cleveland","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The spatial contrast transfer function of the visual system of the pigeon was determined by recording from the optic tectum evoked potentials or extracellular unit activity in response to a pattern stimulus contrast transfer function, determined as a \"response function\", describes the relationship between the contrast in the pattern--which consisted of vertically oriented stripes of sinusoidally varying luminance--and the amplitude of the response at various spatial frequencies (c/deg). The transfer function yields an estimate of the high frequency limit, which in turn is a measure of visual resolving power. Action potentials were recorded extracellularly using glass microelectrodes; for evoked potentials, stainless steel electrodes were used. Recordings were made from the stratum griseum et fibrosum superficiale of the optic tectum. The highest spatial frequency detectable in a visual system is limited by various factors, including the diffraction of light at the pupil and the anatomical spacing of the photoreceptors. The pupil factor can be controlled in experiments in a suitable way. In this paper, the electrophysiologically determined high-frequency limit was compared with the theoretical resolution limit imposed by the photoreceptor mosaic. The experimental results show that the visual system of the pigeon has a high-frequency limit at a spatial frequency of 15.5 c/deg, corresponding to a visual acuity of 1.9 min of arc. The attempt to relate visual acuity in the pigeon to the anatomical spacing of the photoreceptors shows that the Nyquist frequency of the photoreceptor mosaic, the theoretical upper bound of the spatial resolution, agrees with measurement.</p>","PeriodicalId":75812,"journal":{"name":"EEG-EMG Zeitschrift fur Elektroenzephalographie, Elektromyographie und verwandte Gebiete","volume":"22 4","pages":"194-9"},"PeriodicalIF":0.0000,"publicationDate":"1991-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[The spatial frequency limits and the resolving power of the visual system of the pigeon].\",\"authors\":\"M A Pak, S J Cleveland\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The spatial contrast transfer function of the visual system of the pigeon was determined by recording from the optic tectum evoked potentials or extracellular unit activity in response to a pattern stimulus contrast transfer function, determined as a \\\"response function\\\", describes the relationship between the contrast in the pattern--which consisted of vertically oriented stripes of sinusoidally varying luminance--and the amplitude of the response at various spatial frequencies (c/deg). The transfer function yields an estimate of the high frequency limit, which in turn is a measure of visual resolving power. Action potentials were recorded extracellularly using glass microelectrodes; for evoked potentials, stainless steel electrodes were used. Recordings were made from the stratum griseum et fibrosum superficiale of the optic tectum. The highest spatial frequency detectable in a visual system is limited by various factors, including the diffraction of light at the pupil and the anatomical spacing of the photoreceptors. The pupil factor can be controlled in experiments in a suitable way. In this paper, the electrophysiologically determined high-frequency limit was compared with the theoretical resolution limit imposed by the photoreceptor mosaic. The experimental results show that the visual system of the pigeon has a high-frequency limit at a spatial frequency of 15.5 c/deg, corresponding to a visual acuity of 1.9 min of arc. The attempt to relate visual acuity in the pigeon to the anatomical spacing of the photoreceptors shows that the Nyquist frequency of the photoreceptor mosaic, the theoretical upper bound of the spatial resolution, agrees with measurement.</p>\",\"PeriodicalId\":75812,\"journal\":{\"name\":\"EEG-EMG Zeitschrift fur Elektroenzephalographie, Elektromyographie und verwandte Gebiete\",\"volume\":\"22 4\",\"pages\":\"194-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EEG-EMG Zeitschrift fur Elektroenzephalographie, Elektromyographie und verwandte Gebiete\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EEG-EMG Zeitschrift fur Elektroenzephalographie, Elektromyographie und verwandte Gebiete","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[The spatial frequency limits and the resolving power of the visual system of the pigeon].
The spatial contrast transfer function of the visual system of the pigeon was determined by recording from the optic tectum evoked potentials or extracellular unit activity in response to a pattern stimulus contrast transfer function, determined as a "response function", describes the relationship between the contrast in the pattern--which consisted of vertically oriented stripes of sinusoidally varying luminance--and the amplitude of the response at various spatial frequencies (c/deg). The transfer function yields an estimate of the high frequency limit, which in turn is a measure of visual resolving power. Action potentials were recorded extracellularly using glass microelectrodes; for evoked potentials, stainless steel electrodes were used. Recordings were made from the stratum griseum et fibrosum superficiale of the optic tectum. The highest spatial frequency detectable in a visual system is limited by various factors, including the diffraction of light at the pupil and the anatomical spacing of the photoreceptors. The pupil factor can be controlled in experiments in a suitable way. In this paper, the electrophysiologically determined high-frequency limit was compared with the theoretical resolution limit imposed by the photoreceptor mosaic. The experimental results show that the visual system of the pigeon has a high-frequency limit at a spatial frequency of 15.5 c/deg, corresponding to a visual acuity of 1.9 min of arc. The attempt to relate visual acuity in the pigeon to the anatomical spacing of the photoreceptors shows that the Nyquist frequency of the photoreceptor mosaic, the theoretical upper bound of the spatial resolution, agrees with measurement.