基于蚁群优化的OFDMA底层认知无线电系统资源分配

R. Andreotti, I. Stupia, F. Giannetti, V. Lottici, L. Vandendorpe
{"title":"基于蚁群优化的OFDMA底层认知无线电系统资源分配","authors":"R. Andreotti, I. Stupia, F. Giannetti, V. Lottici, L. Vandendorpe","doi":"10.1109/SPAWC.2010.5671014","DOIUrl":null,"url":null,"abstract":"This paper1 deals with dynamic resource allocation problem for OFDMA-based cognitive radio systems. The proposed solution is specifically tailored for a secondary base stations (SBS) transmitting to secondary users (SUs) over the same bands of the licensed primary users (PUs) in underlay fashion. The downlink transmission goodput is thereby maximized while keeping the interference on the PUs within a tolerable range. The NP-hard goodput maximization problem is tackled resorting to an efficient meta-heuristic algorithm based on Ant Colony Optimization (ACO) framework.","PeriodicalId":436215,"journal":{"name":"2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Resource allocation in OFDMA underlay cognitive radio systems based on Ant Colony Optimization\",\"authors\":\"R. Andreotti, I. Stupia, F. Giannetti, V. Lottici, L. Vandendorpe\",\"doi\":\"10.1109/SPAWC.2010.5671014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper1 deals with dynamic resource allocation problem for OFDMA-based cognitive radio systems. The proposed solution is specifically tailored for a secondary base stations (SBS) transmitting to secondary users (SUs) over the same bands of the licensed primary users (PUs) in underlay fashion. The downlink transmission goodput is thereby maximized while keeping the interference on the PUs within a tolerable range. The NP-hard goodput maximization problem is tackled resorting to an efficient meta-heuristic algorithm based on Ant Colony Optimization (ACO) framework.\",\"PeriodicalId\":436215,\"journal\":{\"name\":\"2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2010.5671014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2010.5671014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了基于ofdma的认知无线电系统的动态资源分配问题。所提出的解决方案是专门为辅助基站(SBS)量身定制的,该辅助基站(SBS)通过授权的主用户(pu)的相同频带以底层方式向辅助用户(su)传输数据。从而使下行链路传输增益最大化,同时使对pu的干扰保持在可容忍范围内。采用基于蚁群优化(ACO)框架的高效元启发式算法解决NP-hard good - put最大化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resource allocation in OFDMA underlay cognitive radio systems based on Ant Colony Optimization
This paper1 deals with dynamic resource allocation problem for OFDMA-based cognitive radio systems. The proposed solution is specifically tailored for a secondary base stations (SBS) transmitting to secondary users (SUs) over the same bands of the licensed primary users (PUs) in underlay fashion. The downlink transmission goodput is thereby maximized while keeping the interference on the PUs within a tolerable range. The NP-hard goodput maximization problem is tackled resorting to an efficient meta-heuristic algorithm based on Ant Colony Optimization (ACO) framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信