使用卷积神经网络进行动作识别的骨骼数据的图像表示

I. Vernikos, Eirini Mathe, Antonios Papadakis, E. Spyrou, Phivos Mylonas
{"title":"使用卷积神经网络进行动作识别的骨骼数据的图像表示","authors":"I. Vernikos, Eirini Mathe, Antonios Papadakis, E. Spyrou, Phivos Mylonas","doi":"10.1145/3316782.3322740","DOIUrl":null,"url":null,"abstract":"In this paper we present preliminary results of an approach for understanding human actions, based on a novel 2D image representation for 3D skeletal data. More specifically, motion information for human skeletal joints is transformed to a pseudo-colored image. A Convolutional Neural Network is then used for classification. Our approach is evaluated for actions that may be used in an ambient assisted living scenario.","PeriodicalId":264425,"journal":{"name":"Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An image representation of skeletal data for action recognition using convolutional neural networks\",\"authors\":\"I. Vernikos, Eirini Mathe, Antonios Papadakis, E. Spyrou, Phivos Mylonas\",\"doi\":\"10.1145/3316782.3322740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present preliminary results of an approach for understanding human actions, based on a novel 2D image representation for 3D skeletal data. More specifically, motion information for human skeletal joints is transformed to a pseudo-colored image. A Convolutional Neural Network is then used for classification. Our approach is evaluated for actions that may be used in an ambient assisted living scenario.\",\"PeriodicalId\":264425,\"journal\":{\"name\":\"Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3316782.3322740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316782.3322740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们提出了一种基于3D骨骼数据的新型2D图像表示的理解人类行为方法的初步结果。更具体地说,将人体骨骼关节的运动信息转换为伪彩色图像。然后使用卷积神经网络进行分类。我们的方法被评估为可能在环境辅助生活场景中使用的行动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An image representation of skeletal data for action recognition using convolutional neural networks
In this paper we present preliminary results of an approach for understanding human actions, based on a novel 2D image representation for 3D skeletal data. More specifically, motion information for human skeletal joints is transformed to a pseudo-colored image. A Convolutional Neural Network is then used for classification. Our approach is evaluated for actions that may be used in an ambient assisted living scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信