智能系统中隐私感知人脸识别的隐私与准确性权衡

Wisam Abbasi, Paolo Mori, A. Saracino, V. Frascolla
{"title":"智能系统中隐私感知人脸识别的隐私与准确性权衡","authors":"Wisam Abbasi, Paolo Mori, A. Saracino, V. Frascolla","doi":"10.1109/ISCC55528.2022.9912465","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel approach for privacy preserving face recognition aimed to formally define a trade-off optimization criterion between data privacy and algorithm accuracy. In our methodology, real world face images are anonymized with Gaussian blurring for privacy preservation. The anonymized images are processed for face detection, face alignment, face representation, and face verification. The proposed methodology has been validated with a set of experiments on a well known dataset and three face recognition classifiers. The results demonstrate the effectiveness of our approach to correctly verify face images with different levels of privacy and results accuracy, and to maximize privacy with the least negative impact on face detection and face verification accuracy.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Privacy vs Accuracy Trade-Off in Privacy Aware Face Recognition in Smart Systems\",\"authors\":\"Wisam Abbasi, Paolo Mori, A. Saracino, V. Frascolla\",\"doi\":\"10.1109/ISCC55528.2022.9912465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel approach for privacy preserving face recognition aimed to formally define a trade-off optimization criterion between data privacy and algorithm accuracy. In our methodology, real world face images are anonymized with Gaussian blurring for privacy preservation. The anonymized images are processed for face detection, face alignment, face representation, and face verification. The proposed methodology has been validated with a set of experiments on a well known dataset and three face recognition classifiers. The results demonstrate the effectiveness of our approach to correctly verify face images with different levels of privacy and results accuracy, and to maximize privacy with the least negative impact on face detection and face verification accuracy.\",\"PeriodicalId\":309606,\"journal\":{\"name\":\"2022 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC55528.2022.9912465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9912465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的隐私保护人脸识别方法,旨在正式定义数据隐私与算法精度之间的权衡优化准则。在我们的方法中,真实世界的人脸图像使用高斯模糊进行匿名化,以保护隐私。经过处理的匿名图像用于人脸检测、人脸对齐、人脸表示和人脸验证。所提出的方法已通过一组已知数据集和三个人脸识别分类器的实验进行了验证。结果表明,我们的方法可以正确验证具有不同隐私级别和结果准确性的人脸图像,并在对人脸检测和人脸验证精度的负面影响最小的情况下最大化隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Privacy vs Accuracy Trade-Off in Privacy Aware Face Recognition in Smart Systems
This paper proposes a novel approach for privacy preserving face recognition aimed to formally define a trade-off optimization criterion between data privacy and algorithm accuracy. In our methodology, real world face images are anonymized with Gaussian blurring for privacy preservation. The anonymized images are processed for face detection, face alignment, face representation, and face verification. The proposed methodology has been validated with a set of experiments on a well known dataset and three face recognition classifiers. The results demonstrate the effectiveness of our approach to correctly verify face images with different levels of privacy and results accuracy, and to maximize privacy with the least negative impact on face detection and face verification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信