利用x射线脉冲星进行编队飞行航天器的相对导航

Falin Wu, Xiaohong Sui, Yan Zhao, Yun Zhang
{"title":"利用x射线脉冲星进行编队飞行航天器的相对导航","authors":"Falin Wu, Xiaohong Sui, Yan Zhao, Yun Zhang","doi":"10.1109/PLANS.2012.6236986","DOIUrl":null,"url":null,"abstract":"Relative navigation for spacecrafts has received a great deal of attention recently because of its importance for space applications, especially for formation flights. One approach of relative navigtion is to use the Global Positioning System (GPS). However, GPS signals are not available for deep space missions. Hence, an alternative solution is needed. A possibility is to use the signals emitted from X-ray celestial sources. One of the most reliable X-ray sources is pulsars. Relative navigation of spacecrafts may be accomplished by observing X-ray sources and indirectly determining the spacecrafts' relative position. This paper investigates the algorithm of relative navigation for formation flying spacecrafts using X-ray pulsars. A novel relative navigation algorithm for multiple-satellite formation using X-ray pulsars measurements is proposed. The problem of relative navigation between formation flights utilizing X-ray pulsars measurements is investigated. The time difference of signal arrival (TDOA) is estimated by signal's cross-correlated processing, which is further used as measurement to achieve the relative navigation. An Extended Kalman filter is employed to estimate the relative positions and velocities between the formation flights. Numerical simulations are performed to assess the proposed navigation algorithm. Furthermore, errors of the navigation are analyzed in order to improve the accuracy of this method.","PeriodicalId":282304,"journal":{"name":"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Relative navigation for formation flying spacecrafts using X-ray pulsars\",\"authors\":\"Falin Wu, Xiaohong Sui, Yan Zhao, Yun Zhang\",\"doi\":\"10.1109/PLANS.2012.6236986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relative navigation for spacecrafts has received a great deal of attention recently because of its importance for space applications, especially for formation flights. One approach of relative navigtion is to use the Global Positioning System (GPS). However, GPS signals are not available for deep space missions. Hence, an alternative solution is needed. A possibility is to use the signals emitted from X-ray celestial sources. One of the most reliable X-ray sources is pulsars. Relative navigation of spacecrafts may be accomplished by observing X-ray sources and indirectly determining the spacecrafts' relative position. This paper investigates the algorithm of relative navigation for formation flying spacecrafts using X-ray pulsars. A novel relative navigation algorithm for multiple-satellite formation using X-ray pulsars measurements is proposed. The problem of relative navigation between formation flights utilizing X-ray pulsars measurements is investigated. The time difference of signal arrival (TDOA) is estimated by signal's cross-correlated processing, which is further used as measurement to achieve the relative navigation. An Extended Kalman filter is employed to estimate the relative positions and velocities between the formation flights. Numerical simulations are performed to assess the proposed navigation algorithm. Furthermore, errors of the navigation are analyzed in order to improve the accuracy of this method.\",\"PeriodicalId\":282304,\"journal\":{\"name\":\"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS.2012.6236986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2012.6236986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

航天器相对导航由于其在空间应用特别是编队飞行中的重要意义,近年来受到了广泛的关注。相对导航的一种方法是使用全球定位系统(GPS)。然而,GPS信号不能用于深空任务。因此,需要另一种解决方案。一种可能性是利用天体x射线源发出的信号。脉冲星是最可靠的x射线源之一。航天器的相对导航可以通过观测x射线源和间接确定航天器的相对位置来完成。研究了利用x射线脉冲星进行编队飞行航天器相对导航的算法。提出了一种基于x射线脉冲星测量的多卫星编队相对导航算法。研究了利用x射线脉冲星测量的编队飞行相对导航问题。通过对信号进行交叉相关处理,估计出信号到达时的时间差(TDOA),并将其作为测量值,实现相对导航。采用扩展卡尔曼滤波估计编队飞行之间的相对位置和速度。通过数值仿真对所提出的导航算法进行了验证。为了提高该方法的精度,对导航误差进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative navigation for formation flying spacecrafts using X-ray pulsars
Relative navigation for spacecrafts has received a great deal of attention recently because of its importance for space applications, especially for formation flights. One approach of relative navigtion is to use the Global Positioning System (GPS). However, GPS signals are not available for deep space missions. Hence, an alternative solution is needed. A possibility is to use the signals emitted from X-ray celestial sources. One of the most reliable X-ray sources is pulsars. Relative navigation of spacecrafts may be accomplished by observing X-ray sources and indirectly determining the spacecrafts' relative position. This paper investigates the algorithm of relative navigation for formation flying spacecrafts using X-ray pulsars. A novel relative navigation algorithm for multiple-satellite formation using X-ray pulsars measurements is proposed. The problem of relative navigation between formation flights utilizing X-ray pulsars measurements is investigated. The time difference of signal arrival (TDOA) is estimated by signal's cross-correlated processing, which is further used as measurement to achieve the relative navigation. An Extended Kalman filter is employed to estimate the relative positions and velocities between the formation flights. Numerical simulations are performed to assess the proposed navigation algorithm. Furthermore, errors of the navigation are analyzed in order to improve the accuracy of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信