改进的概率神经网络室内定位技术

C. Chen, L. Yin, Yu-Ju Chen, R. Hwang
{"title":"改进的概率神经网络室内定位技术","authors":"C. Chen, L. Yin, Yu-Ju Chen, R. Hwang","doi":"10.1109/ISIC.2012.6449770","DOIUrl":null,"url":null,"abstract":"This paper presents an indoor positioning technique using a modified probabilistic neural network (MPNN) scheme. It measures the received signal strength (RSS) between an object and stations, and then transforms the RSS into distances. A MPNN engine determines coordinate of the object with the input distances. The experiments are conducted in a realistic ZigBee sensor network. The proposed approach performs significantly better than triangulation technique when the RSS data are unstable. It can be efficiently applied to applications of location based service (LBS).","PeriodicalId":393653,"journal":{"name":"2012 International Conference on Information Security and Intelligent Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A modified probability neural network indoor positioning technique\",\"authors\":\"C. Chen, L. Yin, Yu-Ju Chen, R. Hwang\",\"doi\":\"10.1109/ISIC.2012.6449770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an indoor positioning technique using a modified probabilistic neural network (MPNN) scheme. It measures the received signal strength (RSS) between an object and stations, and then transforms the RSS into distances. A MPNN engine determines coordinate of the object with the input distances. The experiments are conducted in a realistic ZigBee sensor network. The proposed approach performs significantly better than triangulation technique when the RSS data are unstable. It can be efficiently applied to applications of location based service (LBS).\",\"PeriodicalId\":393653,\"journal\":{\"name\":\"2012 International Conference on Information Security and Intelligent Control\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Information Security and Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2012.6449770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Information Security and Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2012.6449770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

提出了一种基于改进概率神经网络(MPNN)的室内定位技术。它测量物体和监测站之间的接收信号强度(RSS),然后将RSS转换为距离。MPNN引擎根据输入距离确定目标的坐标。实验是在真实的ZigBee传感器网络中进行的。当RSS数据不稳定时,该方法的性能明显优于三角测量方法。它可以有效地应用于基于位置服务(LBS)的应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified probability neural network indoor positioning technique
This paper presents an indoor positioning technique using a modified probabilistic neural network (MPNN) scheme. It measures the received signal strength (RSS) between an object and stations, and then transforms the RSS into distances. A MPNN engine determines coordinate of the object with the input distances. The experiments are conducted in a realistic ZigBee sensor network. The proposed approach performs significantly better than triangulation technique when the RSS data are unstable. It can be efficiently applied to applications of location based service (LBS).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信