非刚性三维网格的特征保留规范形式

Z. Lian, A. Godil
{"title":"非刚性三维网格的特征保留规范形式","authors":"Z. Lian, A. Godil","doi":"10.1109/3DIMPVT.2011.22","DOIUrl":null,"url":null,"abstract":"Measuring the dissimilarity between non-rigid objects is a challenging problem in 3D shape retrieval. One potential solution is to construct the models' 3D canonical forms (i.e., isometry-invariant representations in 3D Euclidean space) on which any rigid shape matching algorithm can be applied. However, existing methods, which are typically based on embedding procedures, result in greatly distorted canonical forms, and thus could not provide satisfactory performance to distinguish non-rigid models. In this paper, we present a feature-preserved canonical form for non-rigid 3D meshes. The basic idea is to naturally deform original models against corresponding initial canonical forms calculated by Multidimensional Scaling (MDS). Specifically, objects are first segmented into near-rigid subparts, and then, through properly-designed rotations and translations, original subparts are transformed into poses that correspond well with their positions and directions on MDS canonical forms. Final results are obtained by solving some nonlinear minimization problems for optimal alignments and smoothing boundaries between subparts. Experiments on a widely utilized non-rigid 3D shape benchmark not only verify the advantages of our algorithm against existing approaches, but also demonstrate that, with the help of the proposed canonical form, we can obtain significantly better retrieval accuracy compared to the state-of-the-art.","PeriodicalId":330003,"journal":{"name":"2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Feature-Preserved Canonical Form for Non-rigid 3D Meshes\",\"authors\":\"Z. Lian, A. Godil\",\"doi\":\"10.1109/3DIMPVT.2011.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measuring the dissimilarity between non-rigid objects is a challenging problem in 3D shape retrieval. One potential solution is to construct the models' 3D canonical forms (i.e., isometry-invariant representations in 3D Euclidean space) on which any rigid shape matching algorithm can be applied. However, existing methods, which are typically based on embedding procedures, result in greatly distorted canonical forms, and thus could not provide satisfactory performance to distinguish non-rigid models. In this paper, we present a feature-preserved canonical form for non-rigid 3D meshes. The basic idea is to naturally deform original models against corresponding initial canonical forms calculated by Multidimensional Scaling (MDS). Specifically, objects are first segmented into near-rigid subparts, and then, through properly-designed rotations and translations, original subparts are transformed into poses that correspond well with their positions and directions on MDS canonical forms. Final results are obtained by solving some nonlinear minimization problems for optimal alignments and smoothing boundaries between subparts. Experiments on a widely utilized non-rigid 3D shape benchmark not only verify the advantages of our algorithm against existing approaches, but also demonstrate that, with the help of the proposed canonical form, we can obtain significantly better retrieval accuracy compared to the state-of-the-art.\",\"PeriodicalId\":330003,\"journal\":{\"name\":\"2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DIMPVT.2011.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIMPVT.2011.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

测量非刚性物体之间的不相似性是三维形状检索中一个具有挑战性的问题。一个潜在的解决方案是构造模型的3 d规范形式(例如,isometry-invariant表示三维欧几里得空间)在任何严格的形状匹配算法都可以应用。然而,现有的方法通常基于嵌入过程,导致规范形式严重扭曲,因此不能提供令人满意的性能来区分非刚性模型。在本文中,我们提出了一种特征保留的非刚性三维网格规范形式。基本思想是根据多维尺度(MDS)计算的相应初始规范形式自然地变形原始模型。具体来说,首先将对象分割成接近刚性的子部件,然后通过适当设计的旋转和平移,将原始子部件转换成与MDS规范形式上的位置和方向很好地对应的姿态。最后通过求解子部件间最优对齐和平滑边界的非线性最小化问题得到结果。在一个广泛使用的非刚性三维形状基准上的实验不仅验证了我们的算法相对于现有方法的优势,而且还表明,在本文提出的规范形式的帮助下,我们可以获得比现有方法更好的检索精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Feature-Preserved Canonical Form for Non-rigid 3D Meshes
Measuring the dissimilarity between non-rigid objects is a challenging problem in 3D shape retrieval. One potential solution is to construct the models' 3D canonical forms (i.e., isometry-invariant representations in 3D Euclidean space) on which any rigid shape matching algorithm can be applied. However, existing methods, which are typically based on embedding procedures, result in greatly distorted canonical forms, and thus could not provide satisfactory performance to distinguish non-rigid models. In this paper, we present a feature-preserved canonical form for non-rigid 3D meshes. The basic idea is to naturally deform original models against corresponding initial canonical forms calculated by Multidimensional Scaling (MDS). Specifically, objects are first segmented into near-rigid subparts, and then, through properly-designed rotations and translations, original subparts are transformed into poses that correspond well with their positions and directions on MDS canonical forms. Final results are obtained by solving some nonlinear minimization problems for optimal alignments and smoothing boundaries between subparts. Experiments on a widely utilized non-rigid 3D shape benchmark not only verify the advantages of our algorithm against existing approaches, but also demonstrate that, with the help of the proposed canonical form, we can obtain significantly better retrieval accuracy compared to the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信