Hermite样条的统计最优性

V. Uhlmann, J. Fageot, Harshit Gupta, M. Unser
{"title":"Hermite样条的统计最优性","authors":"V. Uhlmann, J. Fageot, Harshit Gupta, M. Unser","doi":"10.1109/SAMPTA.2015.7148885","DOIUrl":null,"url":null,"abstract":"Hermite splines are commonly used for interpolating data when samples of the derivative are available, in a scheme called Hermite interpolation. Assuming a suitable statistical model, we demonstrate that this method is actually optimal for reconstructing random signals in Papoulis' generalized sampling framework. We focus on second-order Lévy processes - the integrated version of Lévy processes - and rely on cubic Hermite splines to approximate the original continuous-time signal from its samples and its derivatives at integer values. We statistically justify the use of this reconstruction scheme by demonstrating the equivalence between cubic Hermite interpolation and the linear minimum mean-square error (LMMSE) estimation of a second-order Lévy process. We finally illustrate the cubic Hermite reconstruction scheme on an example of a discrete sequence sampled from the realization of a stochastic process.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Statistical optimality of Hermite splines\",\"authors\":\"V. Uhlmann, J. Fageot, Harshit Gupta, M. Unser\",\"doi\":\"10.1109/SAMPTA.2015.7148885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hermite splines are commonly used for interpolating data when samples of the derivative are available, in a scheme called Hermite interpolation. Assuming a suitable statistical model, we demonstrate that this method is actually optimal for reconstructing random signals in Papoulis' generalized sampling framework. We focus on second-order Lévy processes - the integrated version of Lévy processes - and rely on cubic Hermite splines to approximate the original continuous-time signal from its samples and its derivatives at integer values. We statistically justify the use of this reconstruction scheme by demonstrating the equivalence between cubic Hermite interpolation and the linear minimum mean-square error (LMMSE) estimation of a second-order Lévy process. We finally illustrate the cubic Hermite reconstruction scheme on an example of a discrete sequence sampled from the realization of a stochastic process.\",\"PeriodicalId\":311830,\"journal\":{\"name\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMPTA.2015.7148885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在一种称为Hermite插值的方案中,当导数样本可用时,Hermite样条通常用于插值数据。假设一个合适的统计模型,我们证明了这种方法实际上是最优的重建随机信号在Papoulis广义抽样框架。我们关注二阶lsamvy过程- lsamvy过程的集成版本-并依靠三次埃尔米特样条从其样本及其导数中近似原始连续时间信号。我们通过证明三次Hermite插值和二阶lsamvy过程的线性最小均方误差(LMMSE)估计之间的等效性,在统计上证明了这种重建方案的使用。最后以一个离散序列为例说明了三次Hermite重构方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical optimality of Hermite splines
Hermite splines are commonly used for interpolating data when samples of the derivative are available, in a scheme called Hermite interpolation. Assuming a suitable statistical model, we demonstrate that this method is actually optimal for reconstructing random signals in Papoulis' generalized sampling framework. We focus on second-order Lévy processes - the integrated version of Lévy processes - and rely on cubic Hermite splines to approximate the original continuous-time signal from its samples and its derivatives at integer values. We statistically justify the use of this reconstruction scheme by demonstrating the equivalence between cubic Hermite interpolation and the linear minimum mean-square error (LMMSE) estimation of a second-order Lévy process. We finally illustrate the cubic Hermite reconstruction scheme on an example of a discrete sequence sampled from the realization of a stochastic process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信