电动汽车储能系统与虚拟电厂集成的人工智能方法探索

S. Rädle, J. Mast, J. Gerlach, O. Bringmann
{"title":"电动汽车储能系统与虚拟电厂集成的人工智能方法探索","authors":"S. Rädle, J. Mast, J. Gerlach, O. Bringmann","doi":"10.1109/PTC.2019.8810424","DOIUrl":null,"url":null,"abstract":"As a side effect to the mobility aspect, the steadily increasing proportion of electric vehicles provides a decentralized electrical storage network which can be used as an alternative to traditional central storage systems for buffering fluctuations in power generation and balancing the stability of the power grid. The systematic optimization of such energy-technical scenarios towards multiple objectives provides a complex optimization problem, which is addressed in this paper by using mechanisms of Artificial Intelligence (AI). A methodology for an optimized energy exchange between a network of e-mobility energy storages (ES) and a virtual power plant (VPP) will be presented, which improves the stability of the power grid and at the same time charges the storage systems of the electric vehicles for their further use. To validate the developed methodology, the results of two metaheuristics are explored: Simulated Annealing (SA) and Particle Swarm optimization (PSO).","PeriodicalId":187144,"journal":{"name":"2019 IEEE Milan PowerTech","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration of Artifical Intelligence Approaches for the Integration of E-Mobility Energy Storage Systems into Virtual Power Plants\",\"authors\":\"S. Rädle, J. Mast, J. Gerlach, O. Bringmann\",\"doi\":\"10.1109/PTC.2019.8810424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a side effect to the mobility aspect, the steadily increasing proportion of electric vehicles provides a decentralized electrical storage network which can be used as an alternative to traditional central storage systems for buffering fluctuations in power generation and balancing the stability of the power grid. The systematic optimization of such energy-technical scenarios towards multiple objectives provides a complex optimization problem, which is addressed in this paper by using mechanisms of Artificial Intelligence (AI). A methodology for an optimized energy exchange between a network of e-mobility energy storages (ES) and a virtual power plant (VPP) will be presented, which improves the stability of the power grid and at the same time charges the storage systems of the electric vehicles for their further use. To validate the developed methodology, the results of two metaheuristics are explored: Simulated Annealing (SA) and Particle Swarm optimization (PSO).\",\"PeriodicalId\":187144,\"journal\":{\"name\":\"2019 IEEE Milan PowerTech\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Milan PowerTech\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PTC.2019.8810424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Milan PowerTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PTC.2019.8810424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为移动性方面的一个副作用,电动汽车比例的稳步增长提供了一个分散的电力存储网络,可以作为传统中央存储系统的替代方案,缓冲发电的波动,平衡电网的稳定性。这种面向多目标的能源技术场景的系统优化提供了一个复杂的优化问题,本文通过使用人工智能(AI)机制来解决这个问题。本文将提出一种优化电动汽车储能网络(ES)和虚拟发电厂(VPP)之间能量交换的方法,该方法提高了电网的稳定性,同时为电动汽车的储能系统充电,以供其进一步使用。为了验证所开发的方法,探索了两种元启发式方法的结果:模拟退火(SA)和粒子群优化(PSO)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploration of Artifical Intelligence Approaches for the Integration of E-Mobility Energy Storage Systems into Virtual Power Plants
As a side effect to the mobility aspect, the steadily increasing proportion of electric vehicles provides a decentralized electrical storage network which can be used as an alternative to traditional central storage systems for buffering fluctuations in power generation and balancing the stability of the power grid. The systematic optimization of such energy-technical scenarios towards multiple objectives provides a complex optimization problem, which is addressed in this paper by using mechanisms of Artificial Intelligence (AI). A methodology for an optimized energy exchange between a network of e-mobility energy storages (ES) and a virtual power plant (VPP) will be presented, which improves the stability of the power grid and at the same time charges the storage systems of the electric vehicles for their further use. To validate the developed methodology, the results of two metaheuristics are explored: Simulated Annealing (SA) and Particle Swarm optimization (PSO).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信