弱耦合相同系统的轨道渐近稳定循环

I. Barabanov, V. Tkhai
{"title":"弱耦合相同系统的轨道渐近稳定循环","authors":"I. Barabanov, V. Tkhai","doi":"10.1109/SCP.2015.7342036","DOIUrl":null,"url":null,"abstract":"The dynamical model containing coupled identical subsystems is considered. A subsystem is supposed to admit of a family of periodic solutions with the period being a monotonic function of a single numerical parameter. Conditions to be imposed on couplings such that the whole system admits a family Σ of periodic motions similar to that of a subsystem are found. An orbitally asymptotically stable cycle is distinguished in Σ.","PeriodicalId":110366,"journal":{"name":"2015 International Conference \"Stability and Control Processes\" in Memory of V.I. Zubov (SCP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An orbitally asymptotically stable cycle in weakly coupled identical systems\",\"authors\":\"I. Barabanov, V. Tkhai\",\"doi\":\"10.1109/SCP.2015.7342036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamical model containing coupled identical subsystems is considered. A subsystem is supposed to admit of a family of periodic solutions with the period being a monotonic function of a single numerical parameter. Conditions to be imposed on couplings such that the whole system admits a family Σ of periodic motions similar to that of a subsystem are found. An orbitally asymptotically stable cycle is distinguished in Σ.\",\"PeriodicalId\":110366,\"journal\":{\"name\":\"2015 International Conference \\\"Stability and Control Processes\\\" in Memory of V.I. Zubov (SCP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference \\\"Stability and Control Processes\\\" in Memory of V.I. Zubov (SCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCP.2015.7342036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference \"Stability and Control Processes\" in Memory of V.I. Zubov (SCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCP.2015.7342036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑了包含耦合相同子系统的动力学模型。假设子系统具有一组周期解,其周期是单一数值参数的单调函数。对耦合所施加的条件,使整个系统允许一个类似于子系统的周期运动族Σ。轨道渐近稳定循环在Σ中有所区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An orbitally asymptotically stable cycle in weakly coupled identical systems
The dynamical model containing coupled identical subsystems is considered. A subsystem is supposed to admit of a family of periodic solutions with the period being a monotonic function of a single numerical parameter. Conditions to be imposed on couplings such that the whole system admits a family Σ of periodic motions similar to that of a subsystem are found. An orbitally asymptotically stable cycle is distinguished in Σ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信