基因调控网络基序的硅双稳态和振荡动力学演化

Yaochu Jin, B. Sendhoff
{"title":"基因调控网络基序的硅双稳态和振荡动力学演化","authors":"Yaochu Jin, B. Sendhoff","doi":"10.1109/CEC.2008.4630826","DOIUrl":null,"url":null,"abstract":"Autoregulation, toggle switch and relaxation oscillators are important regulatory motifs found in biological gene regulatory networks and interesting results have been reported on theoretical analyses of these regulatory units. However, it is so far unclear how evolution has shaped these motifs based on elementary biochemical reactions. This paper presents a method of designing important dynamics such as bistability and oscillation with these network motifs using an artificial evolutionary algorithm. The evolved dynamics of the network motifs are then verified when the initial states and the parameters of the network motifs are perturbed. It has been found that while it is straightforward to evolve the switching behavior, it is difficult to evolve stable oscillatory dynamics. We show that a higher Hill coefficient will facilitate the generation of undamped oscillation, however, an evolutionary path that can lead to a high Hill coefficient remains an open question for future research.","PeriodicalId":328803,"journal":{"name":"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Evolving in silico bistable and oscillatory dynamics for gene regulatory network motifs\",\"authors\":\"Yaochu Jin, B. Sendhoff\",\"doi\":\"10.1109/CEC.2008.4630826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autoregulation, toggle switch and relaxation oscillators are important regulatory motifs found in biological gene regulatory networks and interesting results have been reported on theoretical analyses of these regulatory units. However, it is so far unclear how evolution has shaped these motifs based on elementary biochemical reactions. This paper presents a method of designing important dynamics such as bistability and oscillation with these network motifs using an artificial evolutionary algorithm. The evolved dynamics of the network motifs are then verified when the initial states and the parameters of the network motifs are perturbed. It has been found that while it is straightforward to evolve the switching behavior, it is difficult to evolve stable oscillatory dynamics. We show that a higher Hill coefficient will facilitate the generation of undamped oscillation, however, an evolutionary path that can lead to a high Hill coefficient remains an open question for future research.\",\"PeriodicalId\":328803,\"journal\":{\"name\":\"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2008.4630826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2008.4630826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

自调节、切换开关和松弛振荡是生物基因调控网络中重要的调控基序,对这些调控单元的理论分析已经有了有趣的结果。然而,迄今为止尚不清楚进化是如何基于基本的生化反应塑造这些基序的。本文提出了一种利用人工进化算法设计双稳性和振荡性等重要动力学特性的方法。当网络基序的初始状态和参数被扰动时,验证了网络基序的演化动力学。研究发现,虽然开关行为的进化是直接的,但很难进化出稳定的振荡动力学。研究表明,较高的Hill系数将促进无阻尼振荡的产生,然而,一个可以导致高Hill系数的进化路径仍然是未来研究的开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolving in silico bistable and oscillatory dynamics for gene regulatory network motifs
Autoregulation, toggle switch and relaxation oscillators are important regulatory motifs found in biological gene regulatory networks and interesting results have been reported on theoretical analyses of these regulatory units. However, it is so far unclear how evolution has shaped these motifs based on elementary biochemical reactions. This paper presents a method of designing important dynamics such as bistability and oscillation with these network motifs using an artificial evolutionary algorithm. The evolved dynamics of the network motifs are then verified when the initial states and the parameters of the network motifs are perturbed. It has been found that while it is straightforward to evolve the switching behavior, it is difficult to evolve stable oscillatory dynamics. We show that a higher Hill coefficient will facilitate the generation of undamped oscillation, however, an evolutionary path that can lead to a high Hill coefficient remains an open question for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信