心脏旁路手术后出血的朴素贝叶斯预测

I. Smith, R. Lister, M. Ray, G. Hawson
{"title":"心脏旁路手术后出血的朴素贝叶斯预测","authors":"I. Smith, R. Lister, M. Ray, G. Hawson","doi":"10.1109/ANZIIS.2001.974097","DOIUrl":null,"url":null,"abstract":"Excessive post-operative bleeding occurs in approximately one out of eight patients who undergo heart bypass surgery. Earlier workers have identified laboratory parameters that are correlated with post-operative blood loss but these correlations are not strong enough to be clinically useful. This paper describes a predictor that combines several of these parameters using Naive Bayesian Reasoning, to produce a clinically useful predictor of blood loss.","PeriodicalId":383878,"journal":{"name":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Naive Bayesian prediction of bleeding after heart by-pass surgery\",\"authors\":\"I. Smith, R. Lister, M. Ray, G. Hawson\",\"doi\":\"10.1109/ANZIIS.2001.974097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Excessive post-operative bleeding occurs in approximately one out of eight patients who undergo heart bypass surgery. Earlier workers have identified laboratory parameters that are correlated with post-operative blood loss but these correlations are not strong enough to be clinically useful. This paper describes a predictor that combines several of these parameters using Naive Bayesian Reasoning, to produce a clinically useful predictor of blood loss.\",\"PeriodicalId\":383878,\"journal\":{\"name\":\"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANZIIS.2001.974097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZIIS.2001.974097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

大约八分之一接受心脏搭桥手术的患者会出现术后过度出血。早期的工作人员已经确定了与术后失血相关的实验室参数,但这些相关性还不够强,不足以在临床上发挥作用。本文描述了使用朴素贝叶斯推理结合这些参数的预测器,以产生临床上有用的失血预测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Naive Bayesian prediction of bleeding after heart by-pass surgery
Excessive post-operative bleeding occurs in approximately one out of eight patients who undergo heart bypass surgery. Earlier workers have identified laboratory parameters that are correlated with post-operative blood loss but these correlations are not strong enough to be clinically useful. This paper describes a predictor that combines several of these parameters using Naive Bayesian Reasoning, to produce a clinically useful predictor of blood loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信