Z-EDM算法的新进展

Luís M. Silva, J. M. D. Sá, Luís A. Alexandre
{"title":"Z-EDM算法的新进展","authors":"Luís M. Silva, J. M. D. Sá, Luís A. Alexandre","doi":"10.1109/ISDA.2006.204","DOIUrl":null,"url":null,"abstract":"In this paper we address some open questions on the recently proposed Zero-Error Density Maximization algorithm for MLP training. We propose a new version of the cost function that solves a training problem encountered in previous work and prove that the use of a nonparametric density estimator preserves the optimal solution. Some experiments are reported comparing this cost function to the usual mean-square error and cross entropy cost functions","PeriodicalId":116729,"journal":{"name":"Sixth International Conference on Intelligent Systems Design and Applications","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"New developments of the Z-EDM algorithm\",\"authors\":\"Luís M. Silva, J. M. D. Sá, Luís A. Alexandre\",\"doi\":\"10.1109/ISDA.2006.204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we address some open questions on the recently proposed Zero-Error Density Maximization algorithm for MLP training. We propose a new version of the cost function that solves a training problem encountered in previous work and prove that the use of a nonparametric density estimator preserves the optimal solution. Some experiments are reported comparing this cost function to the usual mean-square error and cross entropy cost functions\",\"PeriodicalId\":116729,\"journal\":{\"name\":\"Sixth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2006.204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2006.204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们解决了最近提出的用于MLP训练的零误差密度最大化算法的一些开放性问题。我们提出了一个新版本的成本函数,它解决了以前工作中遇到的一个训练问题,并证明使用非参数密度估计器保留了最优解。一些实验报告比较了该成本函数与通常的均方误差和交叉熵成本函数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New developments of the Z-EDM algorithm
In this paper we address some open questions on the recently proposed Zero-Error Density Maximization algorithm for MLP training. We propose a new version of the cost function that solves a training problem encountered in previous work and prove that the use of a nonparametric density estimator preserves the optimal solution. Some experiments are reported comparing this cost function to the usual mean-square error and cross entropy cost functions
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信