个体大数据分层回溯技术研究

Hong Zhang, Bing Guo, Yuncheng Shen, Xuliang Duan, Xiangqian Dong, Yan Shen
{"title":"个体大数据分层回溯技术研究","authors":"Hong Zhang, Bing Guo, Yuncheng Shen, Xuliang Duan, Xiangqian Dong, Yan Shen","doi":"10.1504/ijes.2020.10029023","DOIUrl":null,"url":null,"abstract":"In order to solve the privacy protection problem of individual big data, this paper proposes a hierarchical data trackback technique (HDTT). This technique can realise the data trackback through inter-domain and intra-domain path reconstruction without increasing the core network storage load. The main method is as follows: record the AS domain involved by data packets and IP address information with GBF data structure by use of idle part of packet header, determine the AS domain first with GBFAS data during the path reconstruction, and then determine the intra-domain router with GBFIP data to complete the data trackback. Finally, through the verification of Data Collect Treasure platform by project group, the contact ratio between inter-domain and intra-domain paths is up to over 98% and 92%, respectively, so HDTT technique can accurately reconstruct the data flow path, realise the data trackback and achieve the privacy protection of individual big data.","PeriodicalId":412308,"journal":{"name":"Int. J. Embed. Syst.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A research on hierarchical trackback technique for individual big data\",\"authors\":\"Hong Zhang, Bing Guo, Yuncheng Shen, Xuliang Duan, Xiangqian Dong, Yan Shen\",\"doi\":\"10.1504/ijes.2020.10029023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the privacy protection problem of individual big data, this paper proposes a hierarchical data trackback technique (HDTT). This technique can realise the data trackback through inter-domain and intra-domain path reconstruction without increasing the core network storage load. The main method is as follows: record the AS domain involved by data packets and IP address information with GBF data structure by use of idle part of packet header, determine the AS domain first with GBFAS data during the path reconstruction, and then determine the intra-domain router with GBFIP data to complete the data trackback. Finally, through the verification of Data Collect Treasure platform by project group, the contact ratio between inter-domain and intra-domain paths is up to over 98% and 92%, respectively, so HDTT technique can accurately reconstruct the data flow path, realise the data trackback and achieve the privacy protection of individual big data.\",\"PeriodicalId\":412308,\"journal\":{\"name\":\"Int. J. Embed. Syst.\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Embed. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijes.2020.10029023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijes.2020.10029023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决个体大数据的隐私保护问题,本文提出了一种分层数据追溯技术(HDTT)。该技术可以在不增加核心网存储负荷的情况下,通过域间和域内路径重构实现数据溯源。主要方法是:利用包头的空闲部分,用GBF数据结构记录数据包所涉及的as域和IP地址信息,在路径重构时先用GBFIP数据确定as域,再用GBFIP数据确定域内路由器,完成数据溯源。最后,通过项目组对数据采集宝平台的验证,域间路径和域内路径的接触率分别达到98%以上和92%以上,HDTT技术可以准确重构数据流路径,实现数据追溯,实现个体大数据的隐私保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A research on hierarchical trackback technique for individual big data
In order to solve the privacy protection problem of individual big data, this paper proposes a hierarchical data trackback technique (HDTT). This technique can realise the data trackback through inter-domain and intra-domain path reconstruction without increasing the core network storage load. The main method is as follows: record the AS domain involved by data packets and IP address information with GBF data structure by use of idle part of packet header, determine the AS domain first with GBFAS data during the path reconstruction, and then determine the intra-domain router with GBFIP data to complete the data trackback. Finally, through the verification of Data Collect Treasure platform by project group, the contact ratio between inter-domain and intra-domain paths is up to over 98% and 92%, respectively, so HDTT technique can accurately reconstruct the data flow path, realise the data trackback and achieve the privacy protection of individual big data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信