基于中间和交叉频率依赖的静息状态fMRI数据汇总

Maziar Yaesoubi, Rogers F. Silva, V. Calhoun
{"title":"基于中间和交叉频率依赖的静息状态fMRI数据汇总","authors":"Maziar Yaesoubi, Rogers F. Silva, V. Calhoun","doi":"10.1109/SSIAI.2018.8470314","DOIUrl":null,"url":null,"abstract":"Various data summarization approaches which consist of basis transformation and dimension reduction have been commonly used for information retrieval from brain imaging data including functional magnetic resonance imaging (fMRI). However, most approaches do not include frequency variation of the temporal data in the basis transformation. Here we propose a novel approach to incorporate in-between and cross-frequency dependence for summarization of resting-state fMRI data.","PeriodicalId":422209,"journal":{"name":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-between and cross-frequency dependence-based summarization of resting-state fMRI data\",\"authors\":\"Maziar Yaesoubi, Rogers F. Silva, V. Calhoun\",\"doi\":\"10.1109/SSIAI.2018.8470314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various data summarization approaches which consist of basis transformation and dimension reduction have been commonly used for information retrieval from brain imaging data including functional magnetic resonance imaging (fMRI). However, most approaches do not include frequency variation of the temporal data in the basis transformation. Here we propose a novel approach to incorporate in-between and cross-frequency dependence for summarization of resting-state fMRI data.\",\"PeriodicalId\":422209,\"journal\":{\"name\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSIAI.2018.8470314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSIAI.2018.8470314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从包括功能磁共振成像(fMRI)在内的脑成像数据中提取信息,常用的数据汇总方法包括基变换和降维。然而,大多数方法在基变换中不包括时间数据的频率变化。在这里,我们提出了一种新的方法来合并中间和交叉频率依赖,以总结静息状态fMRI数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-between and cross-frequency dependence-based summarization of resting-state fMRI data
Various data summarization approaches which consist of basis transformation and dimension reduction have been commonly used for information retrieval from brain imaging data including functional magnetic resonance imaging (fMRI). However, most approaches do not include frequency variation of the temporal data in the basis transformation. Here we propose a novel approach to incorporate in-between and cross-frequency dependence for summarization of resting-state fMRI data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信