M. Rafiq, Chengrong Li, Y. Lv, Kai Yi, Shafqat Hussnain
{"title":"变压器油基磁性纳米流体的制备及击穿特性研究","authors":"M. Rafiq, Chengrong Li, Y. Lv, Kai Yi, Shafqat Hussnain","doi":"10.1109/ICEE.2017.7893430","DOIUrl":null,"url":null,"abstract":"Nanofluids were developed by suspending conductive nanoparticles (Fe3O4) to improve the dielectric properties of transformer oil. The AC and lightening impulse breakdown voltages were measured for prepared samples in accordance to IEC standards. The results menifested that the addition of conductive nanoparticles (NPs) to the mineral oil can improve the mean AC breakdown performance 1.16 times of that for carrier oil approximately. Additionally, for nanofluids, the mean lightning impulse breakdown voltages were also enhanced than that of base transformer oil and were 1.36 times in comparison to host oil. A possible mechanism of conductive nanoparticles was also used to describe the difference among the performance of nanofluids and base oil.","PeriodicalId":416187,"journal":{"name":"2017 International Conference on Electrical Engineering (ICEE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Preparation and study of breakdown features of transformer oil based magnetic nanofluids\",\"authors\":\"M. Rafiq, Chengrong Li, Y. Lv, Kai Yi, Shafqat Hussnain\",\"doi\":\"10.1109/ICEE.2017.7893430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanofluids were developed by suspending conductive nanoparticles (Fe3O4) to improve the dielectric properties of transformer oil. The AC and lightening impulse breakdown voltages were measured for prepared samples in accordance to IEC standards. The results menifested that the addition of conductive nanoparticles (NPs) to the mineral oil can improve the mean AC breakdown performance 1.16 times of that for carrier oil approximately. Additionally, for nanofluids, the mean lightning impulse breakdown voltages were also enhanced than that of base transformer oil and were 1.36 times in comparison to host oil. A possible mechanism of conductive nanoparticles was also used to describe the difference among the performance of nanofluids and base oil.\",\"PeriodicalId\":416187,\"journal\":{\"name\":\"2017 International Conference on Electrical Engineering (ICEE)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Electrical Engineering (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEE.2017.7893430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEE.2017.7893430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preparation and study of breakdown features of transformer oil based magnetic nanofluids
Nanofluids were developed by suspending conductive nanoparticles (Fe3O4) to improve the dielectric properties of transformer oil. The AC and lightening impulse breakdown voltages were measured for prepared samples in accordance to IEC standards. The results menifested that the addition of conductive nanoparticles (NPs) to the mineral oil can improve the mean AC breakdown performance 1.16 times of that for carrier oil approximately. Additionally, for nanofluids, the mean lightning impulse breakdown voltages were also enhanced than that of base transformer oil and were 1.36 times in comparison to host oil. A possible mechanism of conductive nanoparticles was also used to describe the difference among the performance of nanofluids and base oil.