{"title":"基于量子粒子群优化的多级最小交叉熵阈值选择","authors":"Yong Zhao, Z. Fang, Kanwei Wang, Hui Pang","doi":"10.1109/SNPD.2007.85","DOIUrl":null,"url":null,"abstract":"The minimum cross entropy thresholding (MCET) has been proven as an efficient method in image segmentation for bilevel thresholding. However, this method is computationally intensive when extended to multilevel thresholding. This paper first employs a recursive programming technique which can reduce an order of magnitude for computing the MCET fitness function. Then, a quantum particle swarm optimization (QPSO) algorithm is proposed for searching the near- optimal MCET thresholds. The experimental results show that the proposed QPSO-based algorithm can get ideal segmentation result with less computation cost.","PeriodicalId":197058,"journal":{"name":"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Multilevel Minimum Cross Entropy Threshold Selection Based on Quantum Particle Swarm Optimization\",\"authors\":\"Yong Zhao, Z. Fang, Kanwei Wang, Hui Pang\",\"doi\":\"10.1109/SNPD.2007.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The minimum cross entropy thresholding (MCET) has been proven as an efficient method in image segmentation for bilevel thresholding. However, this method is computationally intensive when extended to multilevel thresholding. This paper first employs a recursive programming technique which can reduce an order of magnitude for computing the MCET fitness function. Then, a quantum particle swarm optimization (QPSO) algorithm is proposed for searching the near- optimal MCET thresholds. The experimental results show that the proposed QPSO-based algorithm can get ideal segmentation result with less computation cost.\",\"PeriodicalId\":197058,\"journal\":{\"name\":\"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNPD.2007.85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD.2007.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multilevel Minimum Cross Entropy Threshold Selection Based on Quantum Particle Swarm Optimization
The minimum cross entropy thresholding (MCET) has been proven as an efficient method in image segmentation for bilevel thresholding. However, this method is computationally intensive when extended to multilevel thresholding. This paper first employs a recursive programming technique which can reduce an order of magnitude for computing the MCET fitness function. Then, a quantum particle swarm optimization (QPSO) algorithm is proposed for searching the near- optimal MCET thresholds. The experimental results show that the proposed QPSO-based algorithm can get ideal segmentation result with less computation cost.