基于边界不确定性的分类器参数状态选择方法的改进

David Ha, Yuya Tomotoshi, Masahiro Senda, Hideyuki Watanabe, S. Katagiri, M. Ohsaki
{"title":"基于边界不确定性的分类器参数状态选择方法的改进","authors":"David Ha, Yuya Tomotoshi, Masahiro Senda, Hideyuki Watanabe, S. Katagiri, M. Ohsaki","doi":"10.1109/COMPEM.2019.8779090","DOIUrl":null,"url":null,"abstract":"We propose an improved version of our boundary-uncertainty-based method for selecting the optimal classifier parameter status that corresponds to the optimal Bayes boundary. Our original method could accurately estimate the optimal status on various real-life tasks. However, several tasks showed improvement room for the estimation accuracy, time complexity, and stopping criterion of the method. This proposal reformalizes our original method to address these three issues. Experiments for selecting the optimal parameter status of an SVM classifier over 15 datasets show that our improved method can achieve even higher selection reliability, with a reduction of time complexity by a factor exceeding 102 to 103 over the presented datasets.","PeriodicalId":342849,"journal":{"name":"2019 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement for Boundary-Uncertainty-Based Classifier Parameter Status Selection Method\",\"authors\":\"David Ha, Yuya Tomotoshi, Masahiro Senda, Hideyuki Watanabe, S. Katagiri, M. Ohsaki\",\"doi\":\"10.1109/COMPEM.2019.8779090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an improved version of our boundary-uncertainty-based method for selecting the optimal classifier parameter status that corresponds to the optimal Bayes boundary. Our original method could accurately estimate the optimal status on various real-life tasks. However, several tasks showed improvement room for the estimation accuracy, time complexity, and stopping criterion of the method. This proposal reformalizes our original method to address these three issues. Experiments for selecting the optimal parameter status of an SVM classifier over 15 datasets show that our improved method can achieve even higher selection reliability, with a reduction of time complexity by a factor exceeding 102 to 103 over the presented datasets.\",\"PeriodicalId\":342849,\"journal\":{\"name\":\"2019 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEM.2019.8779090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2019.8779090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了基于边界不确定性的方法的改进版本,用于选择与最优贝叶斯边界对应的最优分类器参数状态。我们的原始方法可以准确地估计各种现实生活任务的最佳状态。然而,在一些任务中,该方法的估计精度、时间复杂度和停止准则都有改进的空间。这个建议对我们解决这三个问题的原始方法进行了改革。在15个数据集上选择SVM分类器的最优参数状态的实验表明,我们改进的方法可以实现更高的选择可靠性,与所提供的数据集相比,时间复杂度降低了102到103倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvement for Boundary-Uncertainty-Based Classifier Parameter Status Selection Method
We propose an improved version of our boundary-uncertainty-based method for selecting the optimal classifier parameter status that corresponds to the optimal Bayes boundary. Our original method could accurately estimate the optimal status on various real-life tasks. However, several tasks showed improvement room for the estimation accuracy, time complexity, and stopping criterion of the method. This proposal reformalizes our original method to address these three issues. Experiments for selecting the optimal parameter status of an SVM classifier over 15 datasets show that our improved method can achieve even higher selection reliability, with a reduction of time complexity by a factor exceeding 102 to 103 over the presented datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信