利用时序蒙特卡罗合成近战

I. Chiang, Po-Han Lin, Yuan-Hung Chang, M. Ouhyoung
{"title":"利用时序蒙特卡罗合成近战","authors":"I. Chiang, Po-Han Lin, Yuan-Hung Chang, M. Ouhyoung","doi":"10.1145/2787626.2787638","DOIUrl":null,"url":null,"abstract":"Synthesizing competitive interactions between two avatars in a physics-based simulation remains challenging. Most previous works rely on reusing motion capture data. They also need an offline preprocessing step to either build motion graphs or perform motion analysis. On the other hand, an online motion synthesis algorithm [Hämäläinen et al. 2014] can produce physically plausible motions including balance recovery and dodge projectiles without prior data. They use a kd-tree sequential Monte Carlo sampler to optimize the joint angle trajectories. We extend their approach and propose a new objective function to create two-character animations in a close-range combat. The principles of attack and defense are designed according to fundamental theory of Chinese martial arts. Instead of following a series of fixed Kung Fu forms, our method gives 3D avatars the freedom to explore diverse movements and through pruning can finally evolve an optimal way for fighting.","PeriodicalId":269034,"journal":{"name":"ACM SIGGRAPH 2015 Posters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesizing close combat using sequential Monte Carlo\",\"authors\":\"I. Chiang, Po-Han Lin, Yuan-Hung Chang, M. Ouhyoung\",\"doi\":\"10.1145/2787626.2787638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthesizing competitive interactions between two avatars in a physics-based simulation remains challenging. Most previous works rely on reusing motion capture data. They also need an offline preprocessing step to either build motion graphs or perform motion analysis. On the other hand, an online motion synthesis algorithm [Hämäläinen et al. 2014] can produce physically plausible motions including balance recovery and dodge projectiles without prior data. They use a kd-tree sequential Monte Carlo sampler to optimize the joint angle trajectories. We extend their approach and propose a new objective function to create two-character animations in a close-range combat. The principles of attack and defense are designed according to fundamental theory of Chinese martial arts. Instead of following a series of fixed Kung Fu forms, our method gives 3D avatars the freedom to explore diverse movements and through pruning can finally evolve an optimal way for fighting.\",\"PeriodicalId\":269034,\"journal\":{\"name\":\"ACM SIGGRAPH 2015 Posters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2015 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2787626.2787638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2015 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2787626.2787638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在基于物理的模拟中,合成两个角色之间的竞争性互动仍然具有挑战性。大多数先前的工作依赖于重用动作捕捉数据。它们还需要离线预处理步骤来构建运动图形或执行运动分析。另一方面,一种在线运动合成算法[Hämäläinen et al. 2014]可以在没有先验数据的情况下产生物理上合理的运动,包括平衡恢复和闪避弹丸。他们使用kd-tree顺序蒙特卡罗采样器来优化关节角度轨迹。我们扩展了他们的方法,并提出了一个新的目标函数来创建近距离战斗中的双角色动画。进攻和防御的原则是根据中国武术的基本理论设计的。我们的方法不是遵循一系列固定的功夫形式,而是让3D化身自由地探索不同的动作,并通过修剪最终进化出最佳的战斗方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesizing close combat using sequential Monte Carlo
Synthesizing competitive interactions between two avatars in a physics-based simulation remains challenging. Most previous works rely on reusing motion capture data. They also need an offline preprocessing step to either build motion graphs or perform motion analysis. On the other hand, an online motion synthesis algorithm [Hämäläinen et al. 2014] can produce physically plausible motions including balance recovery and dodge projectiles without prior data. They use a kd-tree sequential Monte Carlo sampler to optimize the joint angle trajectories. We extend their approach and propose a new objective function to create two-character animations in a close-range combat. The principles of attack and defense are designed according to fundamental theory of Chinese martial arts. Instead of following a series of fixed Kung Fu forms, our method gives 3D avatars the freedom to explore diverse movements and through pruning can finally evolve an optimal way for fighting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信