仿射算法中的符号对称函数逼近

Prapeepat Uewichitrapochana, A. Surarerks
{"title":"仿射算法中的符号对称函数逼近","authors":"Prapeepat Uewichitrapochana, A. Surarerks","doi":"10.1109/ECTICON.2013.6559630","DOIUrl":null,"url":null,"abstract":"One major cause of the error explosion is the overestimation of a non-affine function introducing a new noise symbol term with non-minimum coefficient. This paper proposes theorems and its proofs to construct the best univariate affine approximation to a non-affine function in the exception case, Signed-symmetric function, that the existing theorem is not sufficient to determine the optimum one. And, as the result, it shows the use by evaluating the power function and approximating sine function.","PeriodicalId":273802,"journal":{"name":"2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signed-symmetric function approximation in affine arithmetic\",\"authors\":\"Prapeepat Uewichitrapochana, A. Surarerks\",\"doi\":\"10.1109/ECTICON.2013.6559630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One major cause of the error explosion is the overestimation of a non-affine function introducing a new noise symbol term with non-minimum coefficient. This paper proposes theorems and its proofs to construct the best univariate affine approximation to a non-affine function in the exception case, Signed-symmetric function, that the existing theorem is not sufficient to determine the optimum one. And, as the result, it shows the use by evaluating the power function and approximating sine function.\",\"PeriodicalId\":273802,\"journal\":{\"name\":\"2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTICON.2013.6559630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTICON.2013.6559630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

误差爆炸的一个主要原因是对非仿射函数的过高估计引入了一个新的非最小系数噪声符号项。在现有定理不足以确定非仿射函数最优逼近的例外情况下,给出了构造非仿射函数的最佳单变量仿射逼近的定理及其证明。结果是,它通过计算幂函数和近似正弦函数展示了它的用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signed-symmetric function approximation in affine arithmetic
One major cause of the error explosion is the overestimation of a non-affine function introducing a new noise symbol term with non-minimum coefficient. This paper proposes theorems and its proofs to construct the best univariate affine approximation to a non-affine function in the exception case, Signed-symmetric function, that the existing theorem is not sufficient to determine the optimum one. And, as the result, it shows the use by evaluating the power function and approximating sine function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信