遗传算子的性能效应研究

Pi-Sheng Deng
{"title":"遗传算子的性能效应研究","authors":"Pi-Sheng Deng","doi":"10.4018/978-1-59904-849-9.CH220","DOIUrl":null,"url":null,"abstract":"Performance of genetic algorithms (GAs) is mainly determined by several factors. Not only the genetic operators affect the performance of a GA with varying degrees, but also the parameter settings for genetic operators interact in a complicated manner with each other in influencing a GA’s performance. Though many studies have been conducted for this cause, they failed to converge to consistent conclusions regarding the importance of different genetic operators and their parameter settings on the performance of GAs. Actually, optimizing the combinations of different strategies and parameters for different problem types is an NPcomplete problem in itself, and is still an open research problem for GAs (Mitchell, 1996). Recognizing the intrinsic difficulties in finding universally optimal parameter configurations for different classes of problems, we advocate the experience-based approach to discovering generalized guiding rules for different problem domains. To this end, it is necessary for us to gain a better understanding about how different genetic operators and their parameter combinations affect a GA’s behavior. In this research, we systematically investigate, through a series of experiments, the effect of GA operators and the interaction among GA operators on the performance of the GA-based batch selection system as proposed in Deng (2007). This paper intends to serve as an initial inquiry into the research of useful design guidelines for configuring GA-based systems.","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study of the Performance Effect of Genetic Operators\",\"authors\":\"Pi-Sheng Deng\",\"doi\":\"10.4018/978-1-59904-849-9.CH220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance of genetic algorithms (GAs) is mainly determined by several factors. Not only the genetic operators affect the performance of a GA with varying degrees, but also the parameter settings for genetic operators interact in a complicated manner with each other in influencing a GA’s performance. Though many studies have been conducted for this cause, they failed to converge to consistent conclusions regarding the importance of different genetic operators and their parameter settings on the performance of GAs. Actually, optimizing the combinations of different strategies and parameters for different problem types is an NPcomplete problem in itself, and is still an open research problem for GAs (Mitchell, 1996). Recognizing the intrinsic difficulties in finding universally optimal parameter configurations for different classes of problems, we advocate the experience-based approach to discovering generalized guiding rules for different problem domains. To this end, it is necessary for us to gain a better understanding about how different genetic operators and their parameter combinations affect a GA’s behavior. In this research, we systematically investigate, through a series of experiments, the effect of GA operators and the interaction among GA operators on the performance of the GA-based batch selection system as proposed in Deng (2007). This paper intends to serve as an initial inquiry into the research of useful design guidelines for configuring GA-based systems.\",\"PeriodicalId\":320314,\"journal\":{\"name\":\"Encyclopedia of Artificial Intelligence\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Encyclopedia of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-59904-849-9.CH220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-59904-849-9.CH220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

遗传算法的性能主要由几个因素决定。遗传算子不仅对遗传算法的性能有不同程度的影响,而且遗传算子的参数设置之间的相互作用也很复杂,影响遗传算法的性能。尽管为此进行了许多研究,但他们未能就不同遗传算子及其参数设置对GAs性能的重要性得出一致的结论。实际上,针对不同类型的问题优化不同策略和参数的组合本身就是一个NPcomplete问题,对于GAs来说仍然是一个开放的研究问题(Mitchell, 1996)。认识到为不同类型的问题寻找普遍最优参数配置的内在困难,我们提倡基于经验的方法来发现不同问题域的广义指导规则。为此,我们有必要更好地了解不同的遗传算子及其参数组合如何影响遗传算法的行为。在本研究中,我们通过一系列实验,系统地研究了遗传算子和遗传算子之间的相互作用对Deng(2007)提出的基于遗传算法的批量选择系统性能的影响。本文旨在为基于遗传算法的系统配置提供有用的设计指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study of the Performance Effect of Genetic Operators
Performance of genetic algorithms (GAs) is mainly determined by several factors. Not only the genetic operators affect the performance of a GA with varying degrees, but also the parameter settings for genetic operators interact in a complicated manner with each other in influencing a GA’s performance. Though many studies have been conducted for this cause, they failed to converge to consistent conclusions regarding the importance of different genetic operators and their parameter settings on the performance of GAs. Actually, optimizing the combinations of different strategies and parameters for different problem types is an NPcomplete problem in itself, and is still an open research problem for GAs (Mitchell, 1996). Recognizing the intrinsic difficulties in finding universally optimal parameter configurations for different classes of problems, we advocate the experience-based approach to discovering generalized guiding rules for different problem domains. To this end, it is necessary for us to gain a better understanding about how different genetic operators and their parameter combinations affect a GA’s behavior. In this research, we systematically investigate, through a series of experiments, the effect of GA operators and the interaction among GA operators on the performance of the GA-based batch selection system as proposed in Deng (2007). This paper intends to serve as an initial inquiry into the research of useful design guidelines for configuring GA-based systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信